On a class of semilinear nonclassical fractional wave equations with logarithmic nonlinearity

被引:5
|
作者
Vo Van, Au [1 ,2 ]
Thi, Kim Van Ho [3 ]
Nguyen, Anh Tuan [3 ]
机构
[1] Duy Tan Univ, Inst Fundamental & Appl Sci, Ho Chi Minh City, Vietnam
[2] Duy Tan Univ, Fac Nat Sci, Da Nang, Vietnam
[3] Thu Dau Mot Univ, Div Appl Math, Thu Dau Mot, Binh Duong Prov, Vietnam
关键词
blow‐ up; fractional calculus; nonlinear problem; well‐ posedness; ASYMPTOTIC-BEHAVIOR; DIFFUSION-EQUATIONS; GLOBAL EXISTENCE; BLOW-UP; REGULARITY; MODELS;
D O I
10.1002/mma.7466
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the initial boundary value problem for time-fractional subdiffusive equations with Caputo derivative. Our problem has many applications in population dynamics. The source function is given in the logarithmic form. We examine the existence, uniqueness of local solutions, and their ability to continue to a maximal interval of existence. The main tool and analysis here are of applying some Sobolev embedding and some fixed point theorems.
引用
收藏
页码:11022 / 11045
页数:24
相关论文
共 50 条