Two-phonon-resonance terahertz quantum cascade laser based on GaN/AlGaN material system

被引:3
|
作者
Li, Jinfeng [1 ,2 ]
Wan, Ting [1 ,2 ]
Chen, Changshui [1 ,2 ]
机构
[1] South China Normal Univ, Sch Informat Optoelect Sci & Engn, Guangdong Prov Key Lab Nanophoton Funct Mat & Dev, Guangzhou 510006, Guangdong, Peoples R China
[2] South China Normal Univ, Sch Informat Optoelect Sci & Engn, Guangzhou Key Lab Special Fiber Photon Devices, Guangzhou 510006, Guangdong, Peoples R China
关键词
two-phonon-resonance; terahertz quantum cascade laser; GaN/AlGaN material system; MU-M; OPTICAL-PROPERTIES; RATE-EQUATIONS; WELLS; POLARIZATION; TEMPERATURE; SIMULATION; SCATTERING; DESIGN;
D O I
10.1088/1361-6641/ab1401
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, a two-phonon-resonance terahertz quantum cascade laser (THz QCL) based on GaN/AlGaN material system is proposed. GaN/AlGaN material system is first studied in two-phonon-resonance active region structure by using rate equations. The active region adds an energy state above the upper laser state. The energy state difference between additional state and the upper laser state is equal to the longitudinal optical phonon energy which has a large magnitude (similar to 90 meV). The simulation results show that the proposed THz QCL can get better optical properties compared with the traditional three-level active region building in the same material system and has the superiority in improving electronic utilization. The results also show that two-phonon-resonance THz QCL based on GaN/AlGaN material system can gain the peak output power of 8 mW at the temperature of 230 K.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Two-well terahertz quantum-cascade laser with direct intrawell-phonon depopulation
    Kumar, Sushil
    Chan, Chun Wang I.
    Hu, Qing
    Reno, John L.
    APPLIED PHYSICS LETTERS, 2009, 95 (14)
  • [22] Design and Simulation of Three Wavelength Terahertz GaN Quantum Cascade Laser
    Sohel, Md. Shahadat Hasan
    Haq, A. F. M. Saniul
    Talukder, Muhammad Anisuzzaman
    2014 INTERNATIONAL CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING (ICECE), 2014, : 250 - 253
  • [23] Dual resonance phonon-photon-phonon terahertz quantum-cascade laser: physics of the electron transport and temperature performance optimization
    Demic, Aleksandar
    Ikonic, Zoran
    Dean, Paul
    Indjin, Dragan
    OPTICS EXPRESS, 2020, 28 (26): : 38788 - 38812
  • [24] Split-well resonant-phonon terahertz quantum cascade laser
    Levy, Shiran
    Gower, Nathalie Lander
    Piperno, Silvia
    Addamane, Sadhvikas J.
    Reno, John L.
    Albo, Asaf
    OPTICS EXPRESS, 2023, 31 (14) : 22274 - 22283
  • [25] Terahertz quantum-cascade lasers based on an interlaced photon-phonon cascade
    Köhler, R
    Tredicucci, A
    Mauro, C
    Beltram, F
    Beere, HE
    Linfield, EH
    Davies, AG
    Ritchie, DA
    APPLIED PHYSICS LETTERS, 2004, 84 (08) : 1266 - 1268
  • [26] Terahertz quantum cascade lasers based on resonant phonon scattering for depopulation
    Hu, Q
    Williams, BS
    Kumar, S
    Callebaut, H
    Reno, JL
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2004, 362 (1815): : 233 - 247
  • [27] Resonant two-photon terahertz quantum cascade laser
    Talukder, Muhammad Anisuzzaman
    Dean, Paul
    Linfield, Edmund H.
    Davies, A. Giles
    OPTICS EXPRESS, 2022, 30 (18) : 31785 - 31794
  • [28] Model of a Terahertz Quantum-Cascade Laser Based on Two-Dimensional Plasmons
    A. A. Dubinov
    V. Ya. Aleshkin
    Semiconductors, 2021, 55 : 828 - 830
  • [29] Effect of oscillator strength and intermediate resonance on the performance of resonant phonon-based terahertz quantum cascade lasers
    Fathololoumi, S.
    Dupont, E.
    Wasilewski, Z. R.
    Chan, C. W. I.
    Razavipour, S. G.
    Laframboise, S. R.
    Huang, Shengxi
    Hu, Q.
    Ban, D.
    Liu, H. C.
    JOURNAL OF APPLIED PHYSICS, 2013, 113 (11)
  • [30] Model of a Terahertz Quantum-Cascade Laser Based on Two-Dimensional Plasmons
    Dubinov, A. A.
    Aleshkin, V. Ya
    SEMICONDUCTORS, 2021, 55 (11) : 828 - 830