Solutions and optimality criteria to box constrained nonconvex minimization problems

被引:48
|
作者
Gao, David Yang [1 ]
机构
[1] Virginia Polytech Inst & State Univ, Dept Ind & Syst Engn, Dept Math & Grado, Blacksburg, VA 24061 USA
关键词
global optimization; duality; nonconvex minimization; box constraints; integer programming; Boolean least squares problem; NP-hard problems;
D O I
10.3934/jimo.2007.3.293
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper presents a canonical duality theory for solving nonconvex polynomial programming problems subjected to box constraints. It is proved that under certain conditions, the constrained nonconvex problems can be converted to the so-called canonical (perfect) dual problems, which can be solved by deterministic methods. Both global and local extrema of the primal problems can be identified by a triality theory proposed by the author. Applications to nonconvex integer programming and Boolean least squares problems are discussed. Examples are illustrated. A conjecture on NP-hard problems is proposed.
引用
收藏
页码:293 / 304
页数:12
相关论文
共 50 条
  • [41] THE ANALYTIC SOLUTIONS OF A CLASS OF CONSTRAINED MATRIX MINIMIZATION AND MAXIMIZATION PROBLEMS WITH APPLICATIONS
    Xu, Weiwei
    Li, Wen
    Zhu, Lei
    Huang, Xueping
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2019, 29 (02) : 1657 - 1686
  • [42] Sufficient optimality conditions for a class of nonconvex control problems
    Aksenyushkina, E. V.
    Srochko, V. A.
    [J]. COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2015, 55 (10) : 1642 - 1652
  • [43] Sufficient optimality conditions for a class of nonconvex control problems
    E. V. Aksenyushkina
    V. A. Srochkob
    [J]. Computational Mathematics and Mathematical Physics, 2015, 55 : 1642 - 1652
  • [44] Optimality conditions for nonconvex multistate control problems in the coefficients
    Casado-Díaz, J
    Couce-Calvo, J
    Martín-Gómez, JD
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2004, 43 (01) : 216 - 239
  • [45] Box-constrained minimization reformulations of complementarity problems in second-order cones
    R. Andreani
    A. Friedlander
    M. P. Mello
    S. A. Santos
    [J]. Journal of Global Optimization, 2008, 40 : 505 - 527
  • [46] Characterizing Optimality for a Class of Nonconvex Quadratic Robust Optimization Problems Bilaterally Quadratically Constrained Under Interval Uncertainty
    Flores-Bazan, Fabian
    Perez, Ariel
    [J]. JOURNAL OF CONVEX ANALYSIS, 2024, 31 (01) : 25 - 38
  • [47] Optimality and duality for a class of nonconvex fractional programming problems
    Jia, J.H.
    Zhang, Q.J.
    [J]. Xi'an Jianzhu Keji Daxue Xuebao/Journal of Xi'an University of Architecture & Technology, 2001, 33 (02):
  • [48] Box-constrained minimization reformulations of complementarity problems in second-order cones
    Andreani, R.
    Friedlander, A.
    Mello, M. P.
    Santos, S. A.
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2008, 40 (04) : 505 - 527
  • [49] EPSILON-OPTIMALITY CRITERIA FOR VECTOR MINIMIZATION PROBLEMS VIA EXACT PENALTY-FUNCTIONS
    YOKOYAMA, K
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1994, 187 (01) : 296 - 305
  • [50] Gradient Projection and Conditional Gradient Methods for Constrained Nonconvex Minimization
    Balashov, M. V.
    Polyak, B. T.
    Tremba, A. A.
    [J]. NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2020, 41 (07) : 822 - 849