Predicting aggregate morphology of sequence-defined macromolecules with recurrent neural networks
被引:23
|
作者:
Bhattacharya, Debjyoti
论文数: 0引用数: 0
h-index: 0
机构:
Penn State Univ, Mat Sci & Engn, University Pk, PA 16802 USAPenn State Univ, Mat Sci & Engn, University Pk, PA 16802 USA
Bhattacharya, Debjyoti
[1
]
Kleeblatt, Devon C.
论文数: 0引用数: 0
h-index: 0
机构:
Penn State Univ, Mat Sci & Engn, University Pk, PA 16802 USAPenn State Univ, Mat Sci & Engn, University Pk, PA 16802 USA
Kleeblatt, Devon C.
[1
]
Statt, Antonia
论文数: 0引用数: 0
h-index: 0
机构:
Univ Illinois, Grainger Coll Engn, Mat Sci & Engn, Urbana, IL 61801 USAPenn State Univ, Mat Sci & Engn, University Pk, PA 16802 USA
Statt, Antonia
[2
]
Reinhart, Wesley F.
论文数: 0引用数: 0
h-index: 0
机构:
Penn State Univ, Mat Sci & Engn, University Pk, PA 16802 USA
Penn State Univ, Inst Computat & Data Sci, University Pk, PA 16802 USAPenn State Univ, Mat Sci & Engn, University Pk, PA 16802 USA
Reinhart, Wesley F.
[1
,3
]
机构:
[1] Penn State Univ, Mat Sci & Engn, University Pk, PA 16802 USA
[2] Univ Illinois, Grainger Coll Engn, Mat Sci & Engn, Urbana, IL 61801 USA
[3] Penn State Univ, Inst Computat & Data Sci, University Pk, PA 16802 USA
Self-assembly of dilute sequence-defined macromolecules is a complex phenomenon in which the local arrangement of chemical moieties can lead to the formation of long-range structure. The dependence of this structure on the sequence necessarily implies that a mapping between the two exists, yet it has been difficult to model so far. Predicting the aggregation behavior of these macromolecules is challenging due to the lack of effective order parameters, a vast design space, inherent variability, and high computational costs associated with currently available simulation techniques. Here, we accurately predict the morphology of aggregates self-assembled from sequence-defined macromolecules using supervised machine learning. We find that regression models with implicit representation learning perform significantly better than those based on engineered features such as k-mer counting, and a recurrent-neural-network-based regressor performs the best out of nine model architectures we tested. Furthermore, we demonstrate the high-throughput screening of monomer sequences using the regression model to identify candidates for self-assembly into selected morphologies. Our strategy is shown to successfully identify multiple suitable sequences in every test we performed, so we hope the insights gained here can be extended to other increasingly complex design scenarios in the future, such as the design of sequences under polydispersity and at varying environmental conditions.
机构:
Karlsruhe Inst Technol, Inst Organ Chem, Mat Wissensch Zentrum Energiesyteme MZE, Str Forum 7, D-76131 Karlsruhe, GermanyKarlsruhe Inst Technol, Inst Organ Chem, Mat Wissensch Zentrum Energiesyteme MZE, Str Forum 7, D-76131 Karlsruhe, Germany
Wetzel, Katharina S.
Meier, Michael A. R.
论文数: 0引用数: 0
h-index: 0
机构:
Karlsruhe Inst Technol, Inst Organ Chem, Mat Wissensch Zentrum Energiesyteme MZE, Str Forum 7, D-76131 Karlsruhe, GermanyKarlsruhe Inst Technol, Inst Organ Chem, Mat Wissensch Zentrum Energiesyteme MZE, Str Forum 7, D-76131 Karlsruhe, Germany
机构:
Cornell Univ, Robert Frederick Smith Sch Chem & Biomol Engn, Ithaca, NY 14835 USACornell Univ, Robert Frederick Smith Sch Chem & Biomol Engn, Ithaca, NY 14835 USA
Hoff, Emily A.
De Hoe, Guilhem X.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Minnesota, Dept Chem, Minneapolis, MN 55455 USACornell Univ, Robert Frederick Smith Sch Chem & Biomol Engn, Ithaca, NY 14835 USA
De Hoe, Guilhem X.
Mulvaney, Christopher M.
论文数: 0引用数: 0
h-index: 0
机构:
Cornell Univ, Robert Frederick Smith Sch Chem & Biomol Engn, Ithaca, NY 14835 USACornell Univ, Robert Frederick Smith Sch Chem & Biomol Engn, Ithaca, NY 14835 USA
Mulvaney, Christopher M.
Hillmyer, Marc A.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Minnesota, Dept Chem, Minneapolis, MN 55455 USACornell Univ, Robert Frederick Smith Sch Chem & Biomol Engn, Ithaca, NY 14835 USA
Hillmyer, Marc A.
Alabi, Christopher A.
论文数: 0引用数: 0
h-index: 0
机构:
Cornell Univ, Robert Frederick Smith Sch Chem & Biomol Engn, Ithaca, NY 14835 USACornell Univ, Robert Frederick Smith Sch Chem & Biomol Engn, Ithaca, NY 14835 USA
机构:
Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USAUniv Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA
Sun, Jing
Liao, Xunxun
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA
Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USAUniv Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA
Liao, Xunxun
Minor, Andrew M.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA
Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USAUniv Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA
Minor, Andrew M.
Balsara, Nitash P.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA
Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA
Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USAUniv Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA
Balsara, Nitash P.
Zuckermann, Ronald N.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USAUniv Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA