HIROTA DIFFERENCE EQUATION: INVERSE SCATTERING TRANSFORM, DARBOUX TRANSFORMATION, AND SOLITONS

被引:6
|
作者
Pogrebkov, A. K. [1 ,2 ]
机构
[1] RAS Moscow, VA Steklov Math Inst, Moscow, Russia
[2] Natl Res Univ Higher Sch Econ, Moscow, Russia
基金
俄罗斯基础研究基金会;
关键词
Hirota difference equation; inverse scattering transform; soliton; Darboux transformation; EXTENDED RESOLVENT; TODA EQUATION; KPI;
D O I
10.1007/s11232-014-0237-z
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the direct and inverse problems for the Hirota difference equation. We introduce the Jost solutions and scattering data and describe their properties. In a special case, we show that the Darboux transformation allows finding the evolution in discrete time and obtaining a recursive procedure for sequentially constructing the Jost solution at an arbitrary time for a given initial value. We consider some properties of the soliton solutions.
引用
收藏
页码:1585 / 1598
页数:14
相关论文
共 50 条
  • [31] Darboux transformation for the Zn-Hirota systems
    Geng, Lulu
    Li, Chuanzhong
    MODERN PHYSICS LETTERS B, 2019, 33 (21):
  • [32] Asymptotic and scattering behaviour for degenerate multi-solitons in the Hirota equation
    Cen, Julia
    Fring, Andreas
    PHYSICA D-NONLINEAR PHENOMENA, 2019, 397 : 17 - 24
  • [33] ON THE INVERSE SCATTERING TRANSFORM FOR THE ISHIMORI EQUATION
    KONOPELCHENKO, BG
    MATKARIMOV, BT
    PHYSICS LETTERS A, 1989, 135 (03) : 183 - 189
  • [34] Nonlocal continuous Hirota equation: Darboux transformation and symmetry broken and unbroken soliton solutions
    Na-Na Li
    Rui Guo
    Nonlinear Dynamics, 2021, 105 : 617 - 628
  • [35] Nonlocal continuous Hirota equation: Darboux transformation and symmetry broken and unbroken soliton solutions
    Li, Na-Na
    Guo, Rui
    NONLINEAR DYNAMICS, 2021, 105 (01) : 617 - 628
  • [36] Darboux transformations, solitons, breathers and rogue waves for the modified Hirota equation with variable coefficients in an inhomogeneous fiber
    Zhong Du
    Bo Tian
    Han-Peng Chai
    Yan Sun
    Optical and Quantum Electronics, 2018, 50
  • [37] N-fold Darboux transformation and discrete soliton solutions for the discrete Hirota equation
    Zhao, Xiao-Juan
    Guo, Rui
    Hao, Hui-Qin
    APPLIED MATHEMATICS LETTERS, 2018, 75 : 114 - 120
  • [38] Darboux transformations, solitons, breathers and rogue waves for the modified Hirota equation with variable coefficients in an inhomogeneous fiber
    Du, Zhong
    Tian, Bo
    Chai, Han-Peng
    Sun, Yan
    OPTICAL AND QUANTUM ELECTRONICS, 2018, 50 (02)
  • [39] Darboux transformation for a generalized Hirota-Satsuma coupled Korteweg-de Vries equation
    Geng, Xianguo
    Ren, Hongfeng
    He, Guoliang
    PHYSICAL REVIEW E, 2009, 79 (05):
  • [40] Darboux transformation of the general Hirota equation: multisoliton solutions, breather solutions, and rogue wave solutions
    Wang, Deng-Shan
    Chen, Fei
    Wen, Xiao-Yong
    ADVANCES IN DIFFERENCE EQUATIONS, 2016,