Bioinspired Three-Dimensional Magnetoactive Scaffolds for Bone Tissue Engineering

被引:111
|
作者
Fernandes, Margarida M. [1 ,2 ]
Correia, Daniela M. [2 ,3 ]
Ribeiro, Clarisse [1 ,2 ]
Castro, Nelson [4 ]
Correia, Vitor [6 ]
Lanceros-Mendez, Senentxu [4 ,5 ]
机构
[1] Univ Minho, Ctr Biol Engn, Campus Gualtar, P-4710057 Braga, Portugal
[2] Univ Minho, Ctr Phys, P-4710057 Braga, Portugal
[3] Univ Tras Os Montes & Alto Douro, Ctr Quim, P-5001801 Vila Real, Portugal
[4] Univ Basque Country, Basque Ctr Mat Applicat & Nanostruct, BCMat, Sci Pk, E-48940 Leioa, Spain
[5] Ikerbasque, Basque Fdn Sci, Bilbao 48013, Spain
[6] Univ Minho, Ctr Algoritmi, P-4800058 Guimaraes, Portugal
关键词
3D scaffolds; magnetic stimuli; magnetomechanical effect; magnetoelectrical effect; biomimetic; bone tissue engineering; MAGNETOSTRICTIVE RESPONSE; FERRITE NANOPARTICLES; PHASE NUCLEATION; DIFFERENTIATION; PROLIFERATION;
D O I
10.1021/acsami.9b14001
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Bone tissue repair strategies are gaining increasing relevance due to the growing incidence of bone disorders worldwide. Biochemical stimulation is the most commonly used strategy for cell regeneration, while the application of physical cues, including magnetic, mechanical, or electrical fields, is a promising, however, scarcely investigated field. This work reports on novel magnetoactive three-dimensional (3D) porous scaffolds suitable for effective proliferation of osteoblasts in a biomimetic microenvironment. This physically active microenvironment is developed through the bone-mimicking structure of the scaffold combined with the physical stimuli provided by a magnetic custom-made bioreactor on a magnetoresponsive scaffold. Scaffolds are obtained through the development of nanocomposites comprised of a piezoelectric polymer, poly(vinylidene fluoride) (PVDF), and magnetostrictive particles of CoFe2O4, using a solvent casting method guided by the overlapping of nylon template structures with three different fiber diameter sizes (60, 80, and 120 mu m), thus generating 3D scaffolds with different pore sizes. The magnetoactive composites show a structure very similar to trabecular bone with pore sizes that range from 5 to 20 mu m, owing to the inherent process of crystallization of PVDF with the nanoparticles (NPs), interconnected with bigger pores, formed after removing the nylon templates. It is found that the materials crystallize in the electroactive beta-phase of PVDF and promote the proliferation of preosteoblasts through the application of magnetic stimuli. This phenomenon is attributed to both local magnetomechanical and magnetoelectric response of the scaffolds, which induce a proper cellular mechano- and electro-transduction process.
引用
收藏
页码:45265 / 45275
页数:11
相关论文
共 50 条
  • [41] Three-Dimensional Bioprinting Applications for Bone Tissue Engineering
    Maresca, Jamie A. A.
    DeMel, Derek C. C.
    Wagner, Grayson A. A.
    Haase, Colin
    Geibel, John P. P.
    CELLS, 2023, 12 (09)
  • [42] Three-Dimensional Printing for Craniofacial Bone Tissue Engineering
    Shen, Chen
    Witek, Lukasz
    Flores, Roberto L.
    Tovar, Nick
    Torroni, Andrea
    Coelho, Paulo G.
    Kasper, F. Kurtis
    Wong, Mark
    Young, Simon
    TISSUE ENGINEERING PART A, 2020, 26 (23-24) : 1303 - 1311
  • [43] Chitosan composite three dimensional macrospheric scaffolds for bone tissue engineering
    Vyas, Veena
    Kaur, Tejinder
    Thirugnanam, Arunachalam
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2017, 104 : 1946 - 1954
  • [44] Three dimensional macroporous calcium phosphate scaffolds for bone tissue engineering
    Teixeira, S.
    Oliveira, S.
    Ferraz, M. P.
    Monteiro, F. J.
    BIOCERAMICS, VOL 20, PTS 1 AND 2, 2008, 361-363 : 947 - +
  • [45] Macroporous Hydrogel Scaffolds for Three-Dimensional Cell Culture and Tissue Engineering
    Fan, Changjiang
    Wang, Dong-An
    TISSUE ENGINEERING PART B-REVIEWS, 2017, 23 (05) : 451 - 461
  • [46] A Modular Three-Dimensional Bioprinter for Printing Porous Scaffolds for Tissue Engineering
    Warburton, Linnea
    Lou, Leo
    Rubinsky, Boris
    JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2022, 144 (03):
  • [47] Recent Advancements on Three-Dimensional Electrospun Nanofiber Scaffolds for Tissue Engineering
    Yujie Chen
    Xutao Dong
    Muhammad Shafiq
    Gregory Myles
    Norbert Radacsi
    Xiumei Mo
    Advanced Fiber Materials, 2022, 4 : 959 - 986
  • [48] Recent Advancements on Three-Dimensional Electrospun Nanofiber Scaffolds for Tissue Engineering
    Chen, Yujie
    Dong, Xutao
    Shafiq, Muhammad
    Myles, Gregory
    Radacsi, Norbert
    Mo, Xiumei
    ADVANCED FIBER MATERIALS, 2022, 4 (05) : 959 - 986
  • [49] Three-dimensional CaP/gelatin lattice scaffolds with integrated osteoinductive surface topographies for bone tissue engineering
    Nadeem, Danish
    Smith, Carol-Anne
    Dalby, Matthew J.
    Meek, R. M. Dominic
    Lin, Sien
    Li, Gang
    Su, Bo
    BIOFABRICATION, 2015, 7 (01)
  • [50] Design of Hierarchical Three-Dimensional Printed Scaffolds Considering Mechanical and Biological Factors for Bone Tissue Engineering
    Egan, Paul F.
    Ferguson, Stephen J.
    Shea, Kristina
    JOURNAL OF MECHANICAL DESIGN, 2017, 139 (06)