Landslide susceptibility mapping (LSM) is important for catastrophe management in the mountainous regions. They focus on generating susceptibility maps beginning from landslide inventories and considering the main predisposing parameters. The aim of this study was to assess the susceptibility of the occurrence of debris flows in the Zezere River basin and its surrounding area using logistic regression (LR) and frequency ratio (FR) models. To achieve this, a landslide inventory map was created using historical information, satellite imagery, and extensive field works. One hundred landslides were mapped, of which 75% were randomly selected as training data, while the remaining 25% were used for validating the models. The landslide influence factors considered for this study were lithology, elevation, slope gradient, slope aspect, plan curvature, profile curvature, normalized difference vegetation index (NDVI), distance to roads, topographic wetness index (TWI), and stream power index (SPI). The relationships between landslide occurrence and these factors were established, and the results were then evaluated and validated. Validation results show that both methods give acceptable results [the area under curve (AUC) of success rates is 83.71 and 76.38 for LR and FR, respectively]. Furthermore, the AUC results for prediction accuracy revealed that LR model has the highest predictive performance (AUC of predicted rate = 80.26). Hence, it is concluded that the two models showed reasonably good accuracy in predicting the landslide susceptibility in the study area. These two models have the potential to aid planners in development and land-use planning and to offer tools for hazard mitigation measures.