A new approach to evaluate the impact of thermophysical properties of nanofluids on heat transfer and pressure drop

被引:24
|
作者
Abdelrazek, Ali H. [1 ]
Alawi, Omer A. [2 ]
Kazi, S. N. [1 ]
Yusoff, Nukman [1 ,3 ]
Chowdhury, Zaira [4 ]
Sarhan, Ahmed A. D. [5 ]
机构
[1] Univ Malaya, Dept Mech Engn, Kuala Lumpur 50603, Malaysia
[2] UTM, Fac Mech Engn, Dept Thermofluids, Skudai 81310, Johor Bahru, Malaysia
[3] Qassim Univ, Coll Engn, Mech Engn Dept, Buraydah 51452, Saudi Arabia
[4] Univ Malaya, Nanotechnol & Catalysis Res Ctr NANOCAT, Kuala Lumpur, Malaysia
[5] King Fand Univ Petr & Minerals, Dept Mech Engn, Dhahran 31261, Saudi Arabia
关键词
Nanofluids; Thermal conductivity; Dynamic viscosity; Thermal diffusivity; Momentum diffusivity; Turbulent flow; PERFORMANCE;
D O I
10.1016/j.icheatmasstransfer.2018.05.002
中图分类号
O414.1 [热力学];
学科分类号
摘要
In this paper, an experimental and numerical study was conducted to evaluate the impacts of momentum and thermal diffusivity comparing to the thermal conductivity of various types of nanofluids on turbulent forced convection heat transfer. 1%, 2%, and 3% volumetric concentrations of different nanofluids such as Al2O3-DW, SiO2-DW, and Cu-DW were considered in this study and their properties were evaluated numerically at the flow inlet temperature of 30 degrees C. The experimental works were conducted with distilled water as a working fluid to validate the 2-D numerical model. A two-dimensional domain was constructed using ANSYS-Fluent package, and the standard k-epsilon turbulence model was employed to solve the continuity, momentum, and energy equations. The flow was maintained in the Reynolds range between 6000 and 12,000, and the data obtained experimentally were validated by results from empirical correlations. The numerical solutions for the average Nusselt number and pressure drop presents a good agreement with the experimental results as the average error was less than 5% for both the cases of heat transfer and pressure loss data. The results showed that Al2O3 -DW nanofluid has the best enhancement in convection heat transfer coefficient compared with the DW and other nanofluids of the same concentration while Cu-DW nanofluids shown the lowest enhancement though it shown the highest value of thermal conductivity. Also, the results showed that the product of kinematic and dynamic viscosities had the greatest effect on pressure drop in the fluid domain.
引用
收藏
页码:161 / 170
页数:10
相关论文
共 50 条
  • [21] Thermophysical properties and heat transfer in mono and hybrid nanofluids with different base fluids: an overview
    Kanthimathi, T.
    Bhramara, P.
    Atgur, Vinay
    Rao, B. Nageswara
    Banapurmath, Nagaraj R.
    Sajjan, Ashok M.
    Badruddin, Irfan Anjum
    Kamangar, Sarfaraz
    Khan, T. M. Y.
    Baig, Rahmath Ulla
    Vadlamudi, Chandramouli
    Krishnappa, Sanjay
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2023, 149 (4) : 1649 - 1666
  • [22] Thermophysical properties and heat transfer performance of carbon nanotubes water-based nanofluids
    Patrice Estellé
    Salma Halelfadl
    Thierry Maré
    Journal of Thermal Analysis and Calorimetry, 2017, 127 : 2075 - 2081
  • [23] Thermophysical properties and heat transfer in mono and hybrid nanofluids with different base fluids: an overview
    T. Kanthimathi
    P. Bhramara
    Vinay Atgur
    B. Nageswara Rao
    Nagaraj R. Banapurmath
    Ashok M. Sajjan
    Irfan Anjum Badruddin
    Sarfaraz Kamangar
    T. M. Yunus Khan
    Rahmath Ulla Baig
    Chandramouli Vadlamudi
    Sanjay Krishnappa
    Journal of Thermal Analysis and Calorimetry, 2024, 149 : 1649 - 1666
  • [24] Investigating the heat transfer performance and thermophysical properties of nanofluids in a circular micro-channel
    Sohel, M. R.
    Saidur, R.
    Sabri, Mohd Faizul Mohd
    Kamalisarvestani, M.
    Elias, M. M.
    Ijam, Ali
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2013, 42 : 75 - 81
  • [25] Thermophysical properties of TiO2/CuO hybrid nanofluids for heat transfer applications
    Mande R.K.
    Rama Raju S.
    Varma K.P.V.K.
    Materials Research Innovations, 2024, 28 (02) : 83 - 93
  • [26] Thermophysical properties and heat transfer performance of carbon nanotubes water-based nanofluids
    Estelle, Patrice
    Halelfadl, Salma
    Mare, Thierry
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2017, 127 (03) : 2075 - 2081
  • [27] Empirical correlations to predict thermophysical and heat transfer characteristics of nanofluids
    Velagapudi, Vasu
    Konijeti, Rama Krishna
    Aduru, Chandra Sekhara Kumar
    THERMAL SCIENCE, 2008, 12 (02): : 27 - 37
  • [28] Heat transfer and pressure drop of Al2O3 nanofluids in microchannels
    Luo, X.-P. (mmxpluo@scut.edu.cn), 1600, Central South University of Technology (43):
  • [29] Thermophysical Investigations of Ultrasonically Assisted Magnetic Nanofluids for Heat Transfer
    Kharat, Prashant B.
    Humbe, Ashok V.
    Kounsalye, Jitendra S.
    Jadhav, K. M.
    JOURNAL OF SUPERCONDUCTIVITY AND NOVEL MAGNETISM, 2019, 32 (05) : 1307 - 1317
  • [30] Thermophysical Investigations of Ultrasonically Assisted Magnetic Nanofluids for Heat Transfer
    Prashant B. Kharat
    Ashok V. Humbe
    Jitendra S. Kounsalye
    K. M. Jadhav
    Journal of Superconductivity and Novel Magnetism, 2019, 32 : 1307 - 1317