Power calculation for cross-sectional stepped wedge cluster randomized trials with variable cluster sizes
被引:16
|
作者:
Harrison, Linda J.
论文数: 0引用数: 0
h-index: 0
机构:
Harvard TH Chan Sch Publ Hlth, Dept Biostat, Boston, MA 02115 USAHarvard TH Chan Sch Publ Hlth, Dept Biostat, Boston, MA 02115 USA
Harrison, Linda J.
[1
]
Chen, Tom
论文数: 0引用数: 0
h-index: 0
机构:
Harvard Med Sch, Dept Populat Med, Boston, MA 02115 USA
Harvard Pilgrim Hlth Care Inst, Boston, MA USAHarvard TH Chan Sch Publ Hlth, Dept Biostat, Boston, MA 02115 USA
Chen, Tom
[2
,3
]
Wang, Rui
论文数: 0引用数: 0
h-index: 0
机构:
Harvard TH Chan Sch Publ Hlth, Dept Biostat, Boston, MA 02115 USA
Harvard Med Sch, Dept Populat Med, Boston, MA 02115 USA
Harvard Pilgrim Hlth Care Inst, Boston, MA USAHarvard TH Chan Sch Publ Hlth, Dept Biostat, Boston, MA 02115 USA
Wang, Rui
[1
,2
,3
]
机构:
[1] Harvard TH Chan Sch Publ Hlth, Dept Biostat, Boston, MA 02115 USA
[2] Harvard Med Sch, Dept Populat Med, Boston, MA 02115 USA
[3] Harvard Pilgrim Hlth Care Inst, Boston, MA USA
Standard sample size calculation formulas for stepped wedge cluster randomized trials (SW-CRTs) assume that cluster sizes are equal. When cluster sizes vary substantially, ignoring this variation may lead to an under-powered study. We investigate the relative efficiency of a SW-CRT with varying cluster sizes to equal cluster sizes, and derive variance estimators for the intervention effect that account for this variation under a mixed effects model-a commonly used approach for analyzing data from cluster randomized trials. When cluster sizes vary, the power of a SW-CRT depends on the order in which clusters receive the intervention, which is determined through randomization. We first derive a variance formula that corresponds to any particular realization of the randomized sequence and propose efficient algorithms to identify upper and lower bounds of the power. We then obtain an "expected" power based on a first-order approximation to the variance formula, where the expectation is taken with respect to all possible randomization sequences. Finally, we provide a variance formula for more general settings where only the cluster size arithmetic mean and coefficient of variation, instead of exact cluster sizes, are known in the design stage. We evaluate our methods through simulations and illustrate that the average power of a SW-CRT decreases as the variation in cluster sizes increases, and the impact is largest when the number of clusters is small.
机构:
Icahn Sch Med Mt Sinai, Dept Populat Hlth Sci & Policy, New York, NY USA
Mt Sinai Hlth Syst, Inst Healthcare Delivery Sci, New York, NY USA
Icahn Sch Med Mt Sinai, Tisch Canc Inst, New York, NY 10029 USAIcahn Sch Med Mt Sinai, Dept Populat Hlth Sci & Policy, New York, NY USA
Yang, Chen
Berkalieva, Asem
论文数: 0引用数: 0
h-index: 0
机构:
Icahn Sch Med Mt Sinai, Dept Populat Hlth Sci & Policy, New York, NY USA
Mt Sinai Hlth Syst, Inst Healthcare Delivery Sci, New York, NY USA
Icahn Sch Med Mt Sinai, Tisch Canc Inst, New York, NY 10029 USAIcahn Sch Med Mt Sinai, Dept Populat Hlth Sci & Policy, New York, NY USA
Berkalieva, Asem
Mazumdar, Madhu
论文数: 0引用数: 0
h-index: 0
机构:
Icahn Sch Med Mt Sinai, Dept Populat Hlth Sci & Policy, New York, NY USA
Mt Sinai Hlth Syst, Inst Healthcare Delivery Sci, New York, NY USA
Icahn Sch Med Mt Sinai, Tisch Canc Inst, New York, NY 10029 USAIcahn Sch Med Mt Sinai, Dept Populat Hlth Sci & Policy, New York, NY USA
机构:
Harvard TH Chan Sch Publ Hlth, Dept Biostat, Boston, MA 02115 USAHarvard TH Chan Sch Publ Hlth, Dept Biostat, Boston, MA 02115 USA
Harrison, Linda J.
Wang, Rui
论文数: 0引用数: 0
h-index: 0
机构:
Harvard TH Chan Sch Publ Hlth, Dept Biostat, Boston, MA 02115 USA
Harvard Med Sch, Dept Populat Med, Boston, MA 02115 USA
Harvard Pilgrim Hlth Care Inst, Boston, MA USAHarvard TH Chan Sch Publ Hlth, Dept Biostat, Boston, MA 02115 USA