Iterated monoidal categories

被引:56
|
作者
Balteanu, C
Fiedorowicz, Z
Schwänzl, R
Vogt, R
机构
[1] Ohio State Univ, Dept Math, Columbus, OH 43210 USA
[2] Univ Osnabruck, D-49069 Osnabruck, Germany
关键词
iterated loop space; operad; preoperad; E-n-space; symmetric monoidal category; braided monoidal category; coherence theory; Milgram model for Omega(n)Sigma X-n; Smith filtration;
D O I
10.1016/S0001-8708(03)00065-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We develop a notion of an n-fold monoidal category and show that it corresponds in a precise way to the notion of an n-fold loop space. Specifically, the group completion of the nerve of such a category is an n-fold loop space, and free n-fold monoidal categories give rise to a finite simplicial operad of the same homotopy type as the classical little cubes operad used to parametrize the higher H-space structure of an n-fold loop space. We also show directly that this operad has the same homotopy type as the n-th Smith filtration of the Barratt-Eccles operad and the n-th filtration of Berger's complete graph operad. Moreover, this operad contains an equivalent preoperad which gives rise to Milgram's small model for Omega(2)Sigma(2)X when n = 2 and is very closely related to Milgram's model of Omega(n)Sigma(n)X for n>2. (C) 2003 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:277 / 349
页数:73
相关论文
共 50 条
  • [41] GROUP COMPLETING MONOIDAL CATEGORIES
    KETTNER, JE
    JOURNAL OF ALGEBRA, 1975, 37 (02) : 302 - 307
  • [42] Braided and coboundary monoidal categories
    Savage, Alistair
    ALGEBRAS, REPRESENTATIONS AND APPLICATIONS, 2009, 483 : 229 - 251
  • [43] OPERADS FOR SYMMETRIC MONOIDAL CATEGORIES
    Elmendorf, A. D.
    THEORY AND APPLICATIONS OF CATEGORIES, 2023, 39 : 535 - 544
  • [44] Sheaf representation of monoidal categories
    Barbosa, Rui Soares
    Heunen, Chris
    ADVANCES IN MATHEMATICS, 2023, 416
  • [45] Coherence in monoidal track categories
    Guiraud, Yves
    Malbos, Philippe
    MATHEMATICAL STRUCTURES IN COMPUTER SCIENCE, 2012, 22 (06) : 931 - 969
  • [46] Monads on Higher Monoidal Categories
    Aguiar, Marcelo
    Haim, Mariana
    Lopez Franco, Ignacio
    APPLIED CATEGORICAL STRUCTURES, 2018, 26 (03) : 413 - 458
  • [47] BRAIDED SKEW MONOIDAL CATEGORIES
    Bourke, John
    Lack, Stephen
    THEORY AND APPLICATIONS OF CATEGORIES, 2020, 35 : 19 - 63
  • [48] Hopf monads on monoidal categories
    Bruguieres, Alain
    Lack, Steve
    Virelizier, Alexis
    ADVANCES IN MATHEMATICS, 2011, 227 (02) : 745 - 800
  • [49] Belief propagation in monoidal categories
    Morton, Jason
    ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE, 2014, (172): : 262 - 269
  • [50] Cotensor coalgebras in monoidal categories
    Ardizzoni, A.
    Menini, C.
    Stefan, D.
    COMMUNICATIONS IN ALGEBRA, 2007, 35 (01) : 25 - 70