On the one-sided ergodic Hilbert transform

被引:0
|
作者
Assani, Idris [1 ]
Lin, Michael [2 ]
机构
[1] Univ N Carolina, Chapel Hill, NC 27599 USA
[2] Ben Gurion Univ Negev, Beer Sheva, Israel
来源
基金
美国国家科学基金会;
关键词
ergodic theorems; ergodic Hilbert transform; speed of convergence;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let T be a unitary contraction on a Hilbert space X such that X = <((I - T)X))over bar >. We answer two questions related to the strongly continuous semi group {(I - Tau)(r) : r >= 0}, studied in [DL]. We show that the domain of the infinitesimal generator G is precisely the set of functions f for which the one sided ergodic Hilbert transform Sigma(infinity)(n = 1) (n)/(Tau nf) converges. We also show that the domain of G is not boolean OR(0 <alpha < 1) (I - Tau)(alpha) X. The tools used are essentially of a spectral nature.
引用
收藏
页码:21 / +
页数:3
相关论文
共 50 条