Impact of Image Translation using Generative Adversarial Networks for Smoke Detection

被引:0
|
作者
Bankar, Atharva [1 ]
Shinde, Rishabh [1 ]
Bhingarkar, Sukhada [1 ]
机构
[1] Dr Vishwanath Karad MIT WPU, Sch CET, Pune, Maharashtra, India
关键词
Smoke Detection; Image Processing; Image Translation; Generative Adversarial Networks; Object;
D O I
10.1109/ComPE53109.2021.9751797
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Computer vision is a top-tier domain of the technological world that is responsible for automating the visual systems from healthcare to self-driving vehicles. With a reputation for surpassing human intelligence, it can be implemented in various trigger systems like wildfire smoke detection where the emission of smoke as a result of wildfire is fairly unpredictable. Low contrast and brightness have a detrimental effect on computer vision tasks. We present a novel approach to detect forest wildfire smoke, using image translation for converting nighttime images to day time which eliminates the confusion between smoke, cloud, and fog. This translation aids the YOLOv5 object detection algorithm to detect the smoke with the same aptness irrespective of time and lighting conditions. This paper demonstrates that the object detection model performs better on the images translated to day time with a better confidence score as compared to the corresponding nighttime images.
引用
收藏
页码:246 / 255
页数:10
相关论文
共 50 条
  • [41] SuperstarGAN: Generative adversarial networks for image-to-image translation in large-scale domains
    Ko, Kanghyeok
    Yeom, Taesun
    Lee, Minhyeok
    NEURAL NETWORKS, 2023, 162 : 330 - 339
  • [42] StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation
    Choi, Yunjey
    Choi, Minje
    Kim, Munyoung
    Ha, Jung-Woo
    Kim, Sunghun
    Choo, Jaegul
    2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 8789 - 8797
  • [43] Improving Generative Adversarial Networks for Patch-Based Unpaired Image-to-Image Translation
    Boehland, Moritz
    Bruch, Roman
    Baeuerle, Simon
    Rettenberger, Luca
    Reischl, Markus
    IEEE ACCESS, 2023, 11 : 127895 - 127906
  • [44] DEFORMABLE MEDICAL IMAGE REGISTRATION USING GENERATIVE ADVERSARIAL NETWORKS
    Mahapatra, Dwarikanath
    Antony, Bhavna
    Sedai, Suman
    Garnavi, Rahil
    2018 IEEE 15TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2018), 2018, : 1449 - 1453
  • [45] Underwater Image Enhancement Using Stacked Generative Adversarial Networks
    Ye, Xinchen
    Xu, Hongcan
    Ji, Xiang
    Xu, Rui
    ADVANCES IN MULTIMEDIA INFORMATION PROCESSING, PT III, 2018, 11166 : 514 - 524
  • [46] Image Generation Using generative Adversarial Networks and Attention Mechanism
    Kataoka, Yuusuke
    Matsubara, Takashi
    Uehara, Kuniaki
    2016 IEEE/ACIS 15TH INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION SCIENCE (ICIS), 2016, : 933 - 938
  • [47] Refined Image Colorization Using Capsule Generative Adversarial Networks
    Hosni, Raggi
    Hussein, Walid
    TWELFTH INTERNATIONAL CONFERENCE ON MACHINE VISION (ICMV 2019), 2020, 11433
  • [48] AERIAL IMAGE AND MAP SYNTHESIS USING GENERATIVE ADVERSARIAL NETWORKS
    Gu, Jun
    Zhang, Yue
    Zhang, Wenkai
    Yu, Hongfeng
    Wang, Siyue
    Wang, Yaoling
    Wang, Lei
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 9803 - 9806
  • [49] Robust hyperspectral image classification using generative adversarial networks
    Yu, Ziru
    Cui, Wei
    Information Sciences, 2024, 666
  • [50] Image shadow removal using cycle generative adversarial networks
    Tai, Shen-Chuan
    Chen, Peng-Yu
    Jiang, Xin-An
    JOURNAL OF ELECTRONIC IMAGING, 2019, 28 (01)