DETECTION OF SEALS IN REMOTE SENSING IMAGES USING FEATURES EXTRACTED FROM DEEP CONVOLUTIONAL NEURAL NETWORKS

被引:0
|
作者
Salberg, Arnt-Barre [1 ]
机构
[1] Norwegian Comp Ctr, Gaustadalleen 23a, NO-0373 Oslo, Norway
关键词
Object detection; convolutional neural networks; deep learning; detection of seals; OIL-SPILL DETECTION;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we propose an algorithm for automatic detection of seals in aerial remote sensing images using features extracted from a pre-trained deep convolutional neural network (CNN). The method consists of three stages: (i) Detection of potential objects, (ii) feature extraction and (iii) classification of potential objects. The first stage is application dependent, with the aim of detecting all seal pups in the image, with the expense of detecting a large amount of false objects. The second stage extracts generic image features from a local image corresponding to each potential seal detected in the first stage using a CNN trained on the ImageNet database. In the third stage we apply a linear support vector machine to classify the feature vectors extracted in the second stage. The proposed method was demonstrated to an aerial image that contains 84 pups and 128 adult harp seals, and the results show that we are able to detect the seals with high accuracy (2.7% for the adults and 7.3% for the pups). We conclude that deep CNNs trained on the ImageNet database are well suited as a feature extraction module, and using a simple linear SVM, we were able to separate seals from other objects with very high accuracy. We believe that this methodology may be applied to other remote sensing object recognition tasks.
引用
收藏
页码:1893 / 1896
页数:4
相关论文
共 50 条
  • [41] Automated Detection of Dental Caries from Oral Images using Deep Convolutional Neural Networks
    Lasri, Imane
    El-Marzouki, Naoufal
    Riadsolh, Anouar
    Elbelkacemi, Mourad
    INTERNATIONAL JOURNAL OF ONLINE AND BIOMEDICAL ENGINEERING, 2023, 19 (18) : 53 - 70
  • [42] Object Detectionin of Remote Sensing Images Based on Convolutional Neural Networks
    Ou Pan
    Zhang Zheng
    Lu Kui
    Liu Zeyang
    LASER & OPTOELECTRONICS PROGRESS, 2019, 56 (05)
  • [43] Object detection in remote sensing imagery based on convolutional neural networks with suitable scale features
    Dong Z.
    Wang M.
    Li D.
    Wang Y.
    Zhang Z.
    Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2019, 48 (10): : 1285 - 1295
  • [44] Robust Deep Neural Networks for Road Extraction From Remote Sensing Images
    Li, Panle
    He, Xiaohui
    Qiao, Mengjia
    Cheng, Xijie
    Li, Zhiqiang
    Luo, Haotian
    Song, Dingjun
    Li, Daidong
    Hu, Shaokai
    Li, Runchuan
    Han, Pu
    Qiu, Fangbing
    Guo, Hengliang
    Shang, Jiandong
    Tian, Zhihui
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (07): : 6182 - 6197
  • [45] Lung Nodule Detection in CT Images using Deep Convolutional Neural Networks
    Golan, Rotem
    Jacob, Christian
    Denzinger, Jorg
    2016 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2016, : 243 - 250
  • [46] Small target detection in infrared images using deep convolutional neural networks
    Wu Shuang-Chen
    Zuo Zheng-Rong
    JOURNAL OF INFRARED AND MILLIMETER WAVES, 2019, 38 (03) : 371 - 380
  • [47] Airport Detection on Optical Satellite Images Using Deep Convolutional Neural Networks
    Zhang, Peng
    Niu, Xin
    Dou, Yong
    Xia, Fei
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2017, 14 (08) : 1183 - 1187
  • [48] Hyperspectral Remote Sensing Images Deep Feature Extraction Based on Mixed Feature and Convolutional Neural Networks
    Liu, Jing
    Yang, Zhe
    Liu, Yi
    Mu, Caihong
    REMOTE SENSING, 2021, 13 (13)
  • [49] Object Detection and Recognition in Remote Sensing Images by Employing a Hybrid Generative Adversarial Networks and Convolutional Neural Networks
    Deshmukh, Araddhana Arvind
    Kumari, Mamta
    Krishnaiah, V. V. Jaya Rama
    Bandhekar, Shweta
    Dharani, R.
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (09) : 621 - 632
  • [50] Violent Scene Detection Using Convolutional Neural Networks and Deep Audio Features
    Mu, Guankun
    Cao, Haibing
    Jin, Qin
    PATTERN RECOGNITION (CCPR 2016), PT II, 2016, 663 : 451 - 463