Kinetic analysis of isothermal solid state process for synthesized potassium sodium niobate piezoelectric ceramics

被引:1
|
作者
Nadar, Nandini R. [1 ]
Krishna, M. [1 ]
机构
[1] RV Coll Engn, R&D Ctr, Dept Mech Engn, Bangalore 560059, Karnataka, India
关键词
KNN; solid state reaction; Kinetics analysis; Kinetic Triplet; Reaction model; Diffusion model; Nucleation model; Crystal imperfections; THERMAL-DECOMPOSITION; MODEL;
D O I
10.1016/j.matpr.2018.06.483
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Solid state kinetic models were developed for predicting conversion fraction (alpha), reaction rate (d alpha/dt), kinetic triplet (model f(alpha), frequency factor (A) and activation energy (E-a)) of (K0.5Na0.5) NbO(3)ceramics using thermos-gravimetric analysis data obtained at constant temperature of 900 degrees C. The integral reaction model g(alpha), were evaluated for experimental data and theoretical reaction models. Kinetics of solid state reaction of KNN ceramics was a homogenous nucleation process with one dimensional nuclei growth per particle at constant rate, 2D diffusion controlled reaction mechanism, particles with spherical/cubical shape based on Mapel, JMAEK nucleation, Jander Model and contracting volume model respectively. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:20939 / 20946
页数:8
相关论文
共 50 条
  • [31] High Qm lead free sodium potassium niobate piezoelectric ceramics and middle frequency resonator
    Chen, Qiang
    Chen, Lin
    Li, Qishou
    Shi, Xiaoluo
    Liu, Zhiqian
    Yue, Xi
    Xiao, Dingquan
    Zhu, Jianguo
    2007 SIXTEENTH IEEE INTERNATIONAL SYMPOSIUM ON THE APPLICATIONS OF FERROELECTRICS, VOLS 1 AND 2, 2007, : 648 - +
  • [32] Dielectric and piezoelectric properties of sodium potassium niobate-based ceramics sintered in microwave furnace
    Bafandeh, Mohammad Reza
    Gharahkhani, Raziyeh
    Lee, Jae-Shin
    MATERIALS CHEMISTRY AND PHYSICS, 2015, 156 : 254 - 260
  • [33] Morphotropic Phase Boundary of Sodium-Potassium Niobate Lead-Free Piezoelectric Ceramics
    Pang, Xuming
    Qiu, Jinhao
    Zhu, Kongjun
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2011, 94 (03) : 796 - 801
  • [34] Li-modified sodium potassium tantalum niobate lead-free piezoelectric ceramics
    Jiang, Xiang-Ping
    Hu, Xiao-Ping
    Jiang, Fu-Lan
    Liu, Xiao-Dong
    Yin, Qing-Rui
    Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2007, 22 (03): : 465 - 468
  • [35] Domain structure of nonstoichiometric sodium potassium niobate-based ceramics for piezoelectric acoustic actuators
    Su, Hsiu-Hsien
    Hong, Cheng-Shong
    Tsai, Cheng-Che
    Chu, Sheng-Yuan
    CERAMICS INTERNATIONAL, 2018, 44 (04) : 3787 - 3790
  • [36] Potassium-sodium niobate lead-free piezoelectric ceramics: recent advances and perspectives
    Wu, Jiagang
    Xiao, Dingquan
    Zhu, Jianguo
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2015, 26 (12) : 9297 - 9308
  • [37] An easy approach to obtain large piezoelectric constant in high-quality transparent ceramics by normal sintering process in modified potassium sodium niobate ceramics
    Rahman, Attaur
    Park, Seonhwa
    Min, Yuho
    Hwang, Geon-Tae
    Choi, Jong-Jin
    Hahn, Byung-Dong
    Cho, Kyung-Hoon
    Nahm, Sahn
    Ahn, Cheol-Woo
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2020, 40 (08) : 2989 - 2995
  • [38] Electrical properties of piezoelectric sodium-potassium niobate
    Ichiki, M
    Zhang, L
    Tanaka, M
    Maeda, R
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2004, 24 (06) : 1693 - 1697
  • [39] Preparation of barium titanate-potassium niobate solid solution system ceramics and their piezoelectric properties
    Wada, Satoshi
    Nitta, Momoyo
    Kumada, Nobuhiro
    Tanaka, Daisuke
    Furukawa, Masahito
    Ohno, Satoshi
    Moriyoshi, Chikako
    Kuroiwa, Yoshihiro
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2008, 47 (09) : 7678 - 7684
  • [40] Magnetoelectric coupling of manganese ferrite–potassium niobate lead-free composite ceramics synthesized by solid state reaction method
    P. Komalavalli
    I. B. Shameem Banu
    M. Shahid Anwar
    Journal of Materials Science: Materials in Electronics, 2019, 30 : 3411 - 3417