Stretched exponential relaxation in disordered complex systems: Fractal time random walk model

被引:4
|
作者
Aydiner, Ekrem [1 ]
机构
[1] Dokuz Eylul Univ, Dept Phys, TR-35160 Izmir, Turkey
关键词
D O I
10.1088/0256-307X/24/6/016
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We have analytically derived the relaxation function for one-dimensional disordered complex systems in terms of autocorrelation function of fractal time random walk by using operator formalism. We have shown that the relaxation function has stretched exponential, i.e. the Kohlrausch-Williams-Watts character for a fractal time random walk process.
引用
收藏
页码:1486 / 1489
页数:4
相关论文
共 50 条
  • [21] ANOMALOUS RELAXATION IN THE FRACTAL TIME RANDOM WALK MODEL (VOL 74, PG 4125, 1995)
    GOMI, S
    YONEZAWA, F
    PHYSICAL REVIEW LETTERS, 1995, 75 (12) : 2454 - 2454
  • [22] New model for ''stretched exponential'' relaxation
    van de Walle, CG
    AMORPHOUS SILICON TECHNOLOGY - 1996, 1996, 420 : 533 - 538
  • [23] Continuous time random walk model as a model of anomalous relaxation
    Gomi, S
    Yonezawa, F
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 1996, 200 : 521 - 524
  • [24] Rounded stretched exponential for time relaxation functions
    Powles, J. G.
    Heyes, D. M.
    Rickayzen, G.
    Evans, W. A. B.
    JOURNAL OF CHEMICAL PHYSICS, 2009, 131 (21):
  • [25] DERIVATION OF A STRETCHED-EXPONENTIAL TIME RELAXATION
    FLESSELLES, JM
    BOTET, R
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (07): : 903 - 909
  • [26] The relation between stretched-exponential relaxation and the vibrational density of states in glassy disordered systems
    Cui, Bingyu
    Milkus, Rico
    Zaccone, Alessio
    PHYSICS LETTERS A, 2017, 381 (05) : 446 - 451
  • [27] Stretched exponential relaxation in a diffusive lattice model
    Fusco, C
    Gallo, P
    Petri, A
    Rovere, M
    PHYSICAL REVIEW E, 2002, 65 (02):
  • [28] Dynamical model for stretched exponential relaxation in solids
    Huber, DL
    PHYSICAL REVIEW E, 1996, 53 (06): : 6544 - 6546
  • [29] CONTINUOUS-TIME RANDOM WALK MODEL OF RELAXATION OF TWO-STATE SYSTEMS
    Denisov, S. I.
    Bystrik, Yu. S.
    ACTA PHYSICA POLONICA B, 2015, 46 (05): : 931 - 947
  • [30] Large deviations for the maximum of a branching random walk with stretched exponential tails
    Dyszewski, Piotr
    Gantert, Nina
    Hoefelsauer, Thomas
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2020, 25 : 1 - 13