Dissipative character of asymptotics for the nonlinear fractional Schrodinger equation

被引:4
|
作者
Naumkin, Pavel, I [1 ]
机构
[1] UNAM, Ctr Ciencias Matemat, Campus Morelia,AP 61-3, Morelia 58089, Michoacan, Mexico
关键词
SCATTERING;
D O I
10.1063/1.5127942
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the Cauchy problem for the fractional nonlinear Schrodinger equation i partial derivative(t)u + 2/5 vertical bar partial derivative(x)vertical bar(5/2) u = lambda vertical bar u vertical bar(5/2) u, where lambda is an element of R. We obtain the large time asymptotic behavior of solutions, which has a self-similar behavior and a logarithmic modification compared with the corresponding linear problem. Published under license by AIP Publishing.
引用
收藏
页数:26
相关论文
共 50 条
  • [21] On the derivative nonlinear Schrodinger equation with weakly dissipative structure
    Li, Chunhua
    Nishii, Yoshinori
    Sagawa, Yuji
    Sunagawa, Hideaki
    JOURNAL OF EVOLUTION EQUATIONS, 2021, 21 (02) : 1541 - 1550
  • [22] Modulational instability in fractional nonlinear Schrodinger equation
    Zhang, Lifu
    He, Zenghui
    Conti, Claudio
    Wang, Zhiteng
    Hu, Yonghua
    Lei, Dajun
    Li, Ying
    Fan, Dianyuan
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2017, 48 : 531 - 540
  • [23] On the Weak Solution to a Fractional Nonlinear Schrodinger Equation
    Zhang, Zujin
    Wang, Xiaofeng
    Yao, Zheng-an
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [24] Remarks on the inhomogeneous fractional nonlinear Schrodinger equation
    Saanouni, Tarek
    JOURNAL OF MATHEMATICAL PHYSICS, 2016, 57 (08)
  • [25] ASYMPTOTICS FOR THE HIGHER-ORDER DERIVATIVE NONLINEAR SCHRODINGER EQUATION
    Naumkin, Pavel, I
    Sanchez-Suarez, Isahi
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2021, 20 (04) : 1447 - 1478
  • [26] Exponentially small asymptotics of solutions to the defocusing nonlinear Schrodinger equation
    Vartanian, AH
    APPLIED MATHEMATICS LETTERS, 2003, 16 (03) : 425 - 434
  • [27] INTERMITTENCY AND SOLITONS IN THE DRIVEN DISSIPATIVE NONLINEAR SCHRODINGER-EQUATION
    MOON, HT
    GOLDMAN, MV
    PHYSICAL REVIEW LETTERS, 1984, 53 (19) : 1821 - 1824
  • [28] Large Time Asymptotics for the Fractional Order Cubic Nonlinear Schrodinger Equations
    Hayashi, Nakao
    Naumkin, Pavel I.
    ANNALES HENRI POINCARE, 2017, 18 (03): : 1025 - 1054
  • [29] SOLITONS AS ATTRACTORS OF A FORCED DISSIPATIVE NONLINEAR SCHRODINGER-EQUATION
    NOZAKI, K
    BEKKI, N
    PHYSICS LETTERS A, 1984, 102 (09) : 383 - 386
  • [30] Large time behaviour of solutions to the dissipative nonlinear Schrodinger equation
    Hayashi, N
    Kaikina, EI
    Naumkin, PI
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2000, 130 : 1029 - 1043