Review on advances in thermoelectric conversion using ion-conducting polymers

被引:13
|
作者
Lei, Bowen [1 ]
Bai, Shuxin [1 ]
Ju, Su [1 ]
Yin, Changping [1 ]
Chen, Chen [1 ]
Zhang, Jianwei [1 ]
机构
[1] Natl Univ Def Technol, Coll Aerosp Sci & Engn, Dept Mat Sci & Engn, Changsha 410073, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
ionic thermoelectric; polymer electrolyte; electrodes; applications; CARBON-NANOTUBE; ELECTROCHEMICAL SYSTEM; THERMOGALVANIC CELLS; SEEBECK COEFFICIENT; REDOX COUPLE; POWER; HEAT; ELECTROLYTES; COMPOSITES; BEHAVIOR;
D O I
10.1088/2053-1591/ac0364
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The ionic Seebeck effect has been extensively investigated in thermoelectric conversion due to the substantial Seebeck coefficient it promotes. In this context, polymer-based electrolytes have been reported as one of the good ionic Seebeck material categories, demonstrating extraordinary potentials in heat collection for wearable and adaptable hardware. In this review, we make a summary of the latest progress in the ponder for ionic thermoelectric systems based on organic polymer electrolytes and mixed ionic-electronic conductors. Moreover, the investigation on the electrodes utilise in ionic thermoelectric devices is discussed. Finally, the recent progress in novel applications of ionic thermoelectric systems, including ionic thermoelectric supercapacitors, transistors, and sensors, which utilise the materials mentioned above' aggregate vital properties, is also discussed.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Ion-Conducting Hydrogels and Their Applications in Bioelectronics
    Dechiraju, Harika
    Jia, Manping
    Luo, Le
    Rolandi, Marco
    ADVANCED SUSTAINABLE SYSTEMS, 2022, 6 (02)
  • [22] Adaptable and Multifunctional Ion-Conducting Aquaporins
    Tyerman, Stephen D.
    McGaughey, Samantha A.
    Qiu, Jiaen
    Yool, Andrea J.
    Byrt, Caitlin S.
    ANNUAL REVIEW OF PLANT BIOLOGY, VOL 72, 2021, 2021, 72 : 703 - 736
  • [23] Ion-conducting ceramics: Global markets
    Gagliardi, Margareth
    AMERICAN CERAMIC SOCIETY BULLETIN, 2020, 99 (07): : 7 - 7
  • [24] A COMPARISON OF LITHIUM ION-CONDUCTING AND DIVALENT ION-CONDUCTING POLYMER ELECTROLYTES IN SECONDARY SOLID-STATE BATTERIES
    GILMOUR, A
    MUNSHI, MZA
    OWENS, BB
    SMYRL, WH
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1988, 135 (08) : C343 - C343
  • [25] NEW LITHIUM ION-CONDUCTING GLASSES
    KADONO, K
    MITANI, K
    YAMASHITA, M
    TANAKA, H
    SOLID STATE IONICS, 1991, 47 (3-4) : 227 - 230
  • [26] A molecular metal with ion-conducting channels
    Takayoshi Nakamura
    Tomoyuki Akutagawa
    Kazumasa Honda
    Allan E. Underhill
    A. Treeve Coomber
    Richard H. Friend
    Nature, 1998, 394 : 159 - 162
  • [27] Microwave melting of ion-conducting glasses
    Duval, DJ
    Terjak, MJE
    Risbud, SH
    Phillips, BL
    MICROWAVE PROCESSING OF MATERIALS V, 1996, 430 : 125 - 129
  • [28] Ion-conducting polymer electrolyte interactions
    Gutshall, J
    Frech, R
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2003, 225 : U512 - U513
  • [29] Quantifying Lithium Salt and Polymer Density Distributions in Nanostructured Ion-Conducting Block Polymers
    Gartner, Thomas E., III
    Morris, Melody A.
    Shelton, Cameron K.
    Dura, Joseph A.
    Epps, Thomas H., III
    MACROMOLECULES, 2018, 51 (05) : 1917 - 1926
  • [30] Time-Humidity-Superposition Principle in Electrical Conductivity Spectra of Ion-Conducting Polymers
    Cramer, C.
    De, S.
    Schoenhoff, M.
    PHYSICAL REVIEW LETTERS, 2011, 107 (02)