Dynamical density functional theory for interacting Brownian particles: stochastic or deterministic?

被引:198
|
作者
Archer, AJ
Rauscher, M
机构
[1] Univ Bristol, HH Wills Phys Lab, Bristol BS8 1TL, Avon, England
[2] Max Planck Inst Met Res, D-70569 Stuttgart, Germany
[3] Univ Stuttgart, ITAP, D-70569 Stuttgart, Germany
来源
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1088/0305-4470/37/40/001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We aim to clarify confusions in the literature as to whether or not dynamical density functional theories for the one-body density of a classical Brownian fluid should contain a stochastic noise term. We point out that a stochastic as well as a deterministic equation of motion for the density distribution can be justified, depending on how the fluid one-body density is defined-i.e. whether it is an ensemble averaged density distribution or a spatially and/or temporally coarse grained density distribution.
引用
收藏
页码:9325 / 9333
页数:9
相关论文
共 50 条
  • [1] Dynamical density functional theory for the diffusion of injected Brownian particles
    H. Löwen
    M. Heinen
    [J]. The European Physical Journal Special Topics, 2014, 223 : 3113 - 3127
  • [2] Dynamical density functional theory for the diffusion of injected Brownian particles
    Loewen, H.
    Heinen, M.
    [J]. EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2014, 223 (14): : 3113 - 3127
  • [3] STOCHASTIC DESCRIPTIONS OF THE DYNAMICS OF INTERACTING BROWNIAN PARTICLES
    TOUGH, RJA
    PUSEY, PN
    LEKKERKERKER, HNW
    VANDENBROECK, C
    [J]. MOLECULAR PHYSICS, 1986, 59 (03) : 595 - 619
  • [4] Stochastic model for the dynamics of interacting Brownian particles
    Mayorga, M
    Romero-Salazar, L
    Rubí, JM
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2002, 307 (3-4) : 297 - 314
  • [5] Dynamical density functional theory for anisotropic colloidal particles
    Rex, M.
    Wensink, H. H.
    Loewen, H.
    [J]. PHYSICAL REVIEW E, 2007, 76 (02):
  • [6] Dynamical density functional theory for colloidal particles with arbitrary shape
    Wittkowski, Raphael
    Loewen, Hartmut
    [J]. MOLECULAR PHYSICS, 2011, 109 (23-24) : 2935 - 2943
  • [7] Interacting Brownian particles
    Cichocki, B
    [J]. DYNAMICS: MODELS AND KINETIC METHODS FOR NON-EQUILIBRIUM MANY BODY SYSTEMS, 2000, 371 : 65 - 71
  • [8] Stability of the nonlinear stochastic process that approximates the system of interacting Brownian particles
    Yarykin, P. N.
    [J]. THEORY OF PROBABILITY AND ITS APPLICATIONS, 2007, 51 (02) : 387 - 396
  • [9] Brownian motion of interacting nonspherical tracer particles: General theory
    HernandezContreras, M
    MedinaNoyola, M
    [J]. PHYSICAL REVIEW E, 1996, 54 (06) : 6573 - 6585
  • [10] Stochastic density functional theory
    Fabian, Marcel D.
    Shpiro, Ben
    Raban, Ran
    Neuhauser, Daniel
    Baer, Roi
    [J]. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE, 2019, 9 (06)