Research on ensemble model of anomaly detection based on autoencoder

被引:6
|
作者
Han, Yaning [1 ]
Ma, Yunyun [2 ]
Wang, Jinbo [2 ]
Wang, Jianmin [2 ]
机构
[1] Univ Chinese Acad Sci, Chinese Acad Sci, Technol & Engn Ctr Space Utilizat, Beijing, Peoples R China
[2] Chinese Acad Sci, Technol & Engn Ctr Space Utilizat, Beijing, Peoples R China
关键词
anomaly detection; autoencoder; ensemble; FAULT-DIAGNOSIS;
D O I
10.1109/QRS51102.2020.00060
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In the fields of technology such as aerospace, anomaly detection is critical to the overall system. With the large increase in data volume and dimensions, the traditional detection methods have great limitations, and thus anomaly detection algorithms based on deep learning have received widespread attention. In this paper, based on autoencoder: standard autoencoder, denoising autoencoder, and sparse autoencoder, an ensemble detection model that can extract more feature information is proposed. To make more use of these feature information, inspired by the idea of pooling layer of the CNN, two feature fusion methods are proposed. Finally, the experiment verifies that the result of this model is better than the single autoencoder model.
引用
收藏
页码:414 / 417
页数:4
相关论文
共 50 条
  • [41] Improved autoencoder for unsupervised anomaly detection
    Cheng, Zhen
    Wang, Siwei
    Zhang, Pei
    Wang, Siqi
    Liu, Xinwang
    Zhu, En
    [J]. INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2021, 36 (12) : 7103 - 7125
  • [42] Adversarial autoencoder for hyperspectral anomaly detection
    Du Q.
    Xie W.
    [J]. Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2023, 52 (07): : 1105 - 1114
  • [43] Hyperspectral Anomaly Detection With Guided Autoencoder
    Xiang, Pei
    Ali, Shahzad
    Jung, Soon Ki
    Zhou, Huixin
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [44] Anomaly Detection in Robotic Welds - Investigation of LSTM Autoencoder Model Performance
    Skar, Eirik Magnus
    Kloumann, Jon-Erick
    Robbersmyr, Kjell G.
    Lovasen, Torfinn
    [J]. 2023 11TH INTERNATIONAL CONFERENCE ON CONTROL, MECHATRONICS AND AUTOMATION, ICCMA, 2023, : 265 - 270
  • [45] Towards an Interpretable Autoencoder: A Decision-Tree-Based Autoencoder and its Application in Anomaly Detection
    Aguilar, Diana Laura
    Medina-Perez, Miguel Angel
    Loyola-Gonzalez, Octavio
    Choo, Kim-Kwang Raymond
    Bucheli-Susarrey, Edoardo
    [J]. IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2023, 20 (02) : 1048 - 1059
  • [46] AUTOENCODER IN AUTOENCODER NETWORK BASED ON LOW-RANK EMBEDDING FOR ANOMALY DETECTION IN HYPERSPECTRAL IMAGES
    Cao, Weinan
    Zhang, Hongyan
    He, Wei
    Chen, Hongyu
    Tat, Ewe Hong
    [J]. 2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 3263 - 3266
  • [47] Network anomaly detection based on selective ensemble algorithm
    Hongle Du
    Yan Zhang
    [J]. The Journal of Supercomputing, 2021, 77 : 2875 - 2896
  • [48] Active Anomaly Detection Technology Based on Ensemble Learning
    Liu, Weiwei
    Lei, Shuya
    Peng, Liangying
    Feng, Jun
    Pan, Sichen
    Gao, Meng
    [J]. DATA SCIENCE (ICPCSEE 2022), PT I, 2022, 1628 : 53 - 66
  • [49] Ensemble Methods for Anomaly Detection Based on System Log
    Xia, Xuze
    Zhang, Wei
    Jiang, Jianhui
    [J]. 2019 IEEE 24TH PACIFIC RIM INTERNATIONAL SYMPOSIUM ON DEPENDABLE COMPUTING (PRDC 2019), 2019, : 93 - 94
  • [50] Network anomaly detection based on selective ensemble algorithm
    Du, Hongle
    Zhang, Yan
    [J]. JOURNAL OF SUPERCOMPUTING, 2021, 77 (03): : 2875 - 2896