QUANTUM COMPUTATIONAL ALGEBRA WITH A NON-COMMUTATIVE GENERALIZATION

被引:14
|
作者
Chen, Wenjuan [1 ]
Dudek, Wieslaw A. [2 ]
机构
[1] Univ Jinan, Sch Math Sci, West Rd Nan Xinzhuang 336, Jinan 250022, Shandong, Peoples R China
[2] Wroclaw Univ Sci & Technol, Fac Pure & Appl Math, Wyb Wyspianskiego 27, PL-50370 Wroclaw, Poland
基金
中国国家自然科学基金;
关键词
direct product decomposition; pseudo-MV algebra; quasi l-group; quasi-MV algebra; quasi-pseudo-MV algebra; QUASI-MV ALGEBRAS; PSEUDOEFFECT ALGEBRAS; VARIETIES; LOGIC;
D O I
10.1515/ms-2015-0112
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce a non-commutative generalization of quasi-MV algebra, called quasi-pseudo-MV algebra. We present some properties of quasi-pseudo-MV algebras and investigate the direct product decomposition of them. Further, we generalize quasi l-group to the non-commutative case and prove the interval of a non-commutative quasi l-group with a strong quasi-unit is a quasi-pseudo-MV algebra. (C) 2016 Mathematical Institute Slovak Academy of Sciences
引用
收藏
页码:19 / 34
页数:16
相关论文
共 50 条
  • [31] Non-commutative geometry and quantum groups
    Majid, S
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2000, 358 (1765): : 89 - 109
  • [32] On the generalization of linear least mean squares estimation to quantum systems with non-commutative outputs
    Amini, Nina H.
    Miao, Zibo
    Pan, Yu
    James, Matthew R.
    Mabuchi, Hideo
    EPJ QUANTUM TECHNOLOGY, 2015, 2
  • [33] On the generalization of linear least mean squares estimation to quantum systems with non-commutative outputs
    Nina H Amini
    Zibo Miao
    Yu Pan
    Matthew R James
    Hideo Mabuchi
    EPJ Quantum Technology, 2
  • [34] Non-commutative generalization of integrable quadratic ODE systems
    Sokolov, V
    Wolf, T.
    LETTERS IN MATHEMATICAL PHYSICS, 2020, 110 (03) : 533 - 553
  • [35] Derivations on algebras of a non-commutative generalization of the Lukasiewicz logic
    Rachunek, Jiri
    Salounova, Dana
    FUZZY SETS AND SYSTEMS, 2018, 333 : 11 - 16
  • [36] Quantum logic and Non-Commutative Geometry
    Marchetti, P. A.
    Rubele, R.
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2007, 46 (01) : 51 - 64
  • [37] Non-commutative algebras and quantum structures
    Dvurecenskij, A
    Vetterlein, T
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2004, 43 (7-8) : 1599 - 1612
  • [38] Non-Commutative Algebras and Quantum Structures
    Anatolij Dvurečenskij
    Thomas Vetterlein
    International Journal of Theoretical Physics, 2004, 43 : 1599 - 1612
  • [39] Quantum mechanics on non-commutative plane
    Demetrian, M
    Kochan, D
    ACTA PHYSICA SLOVACA, 2002, 52 (01) : 1 - 9
  • [40] Quantum Logic and Non-Commutative Geometry
    P. A. Marchetti
    R. Rubele
    International Journal of Theoretical Physics, 2007, 46 : 49 - 62