Limit theorems and coexistence probabilities for the Curie-Weiss Potts model with an external field

被引:6
|
作者
Gandolfo, Daniel [2 ,3 ,4 ]
Ruiz, Jean [2 ,3 ,4 ]
Wouts, Marc [1 ]
机构
[1] Univ Paris 13, CNRS, LAGA, UMR 7539, F-93430 Villetaneuse, France
[2] CNRS, Ctr Phys Theor, UMR 6207, F-13009 Marseille 9, France
[3] Univ Aix Marseille, F-13009 Marseille 9, France
[4] Univ Sud Toulon Var, F-13009 Marseille 9, France
关键词
Curie-Weiss Potts model; Mean field model; First-order phase transition; Limit theorems; PHASE-TRANSITIONS; SUMS;
D O I
10.1016/j.spa.2009.10.011
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The Curie-Weiss Potts model is a mean field version of the well-known Potts model. In this model, the critical line beta = beta(c)(h) is explicitly known and corresponds to a first-order transition when q > 2. In the present paper we describe the fluctuations of the density vector in the whole domain beta >= 0 and h >= 0, including the conditional fluctuations on the critical line and the non-Gaussian fluctuations at the extremity of the critical line. The probabilities of each of the two thermodynamically stable states on the critical line are also computed. Similar results are inferred for the random-cluster model on the complete graph. (C) 2009 Published by Elsevier B.V.
引用
收藏
页码:84 / 104
页数:21
相关论文
共 50 条
  • [41] A CURIE-WEISS MODEL OF SELF-ORGANIZED CRITICALITY
    Cerf, Raphael
    Gorny, Matthias
    ANNALS OF PROBABILITY, 2016, 44 (01): : 444 - 478
  • [42] A dynamical Curie-Weiss model of SOC: The Gaussian case
    Gorny, Matthias
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2017, 53 (02): : 658 - 678
  • [43] Magnetic field dependence of the Curie-Weiss paramagnetism in CrV alloys
    de, Oliveira, A.J.A.
    Ortiz, W.A.
    de Lima, O.F.
    de Camargo, P.C.
    Journal of Applied Physics, 1997, 81 (8 pt 2A):
  • [44] Path-space moderate deviation principles for the random field Curie-Weiss model
    Collet, Francesca
    Kraaij, Richard C.
    arXiv, 2017,
  • [45] Entanglement mean-field theory and the Curie-Weiss law
    Sen , Aditi
    Sen, Ujjwal
    EPL, 2012, 99 (02)
  • [46] Magnetic field dependence of the Curie-Weiss paramagnetism in CrV alloys
    de Oliveira, AJA
    Ortiz, WA
    de Lima, OF
    de Camargo, PC
    JOURNAL OF APPLIED PHYSICS, 1997, 81 (08) : 4209 - 4211
  • [47] Energy Landscape and Metastability of Curie–Weiss–Potts Model
    Lee J.
    Journal of Statistical Physics, 2022, 187 (1)
  • [48] Path-space moderate deviation principles for the random field Curie-Weiss model
    Collet, Francesca
    Kraaij, Richard C.
    ELECTRONIC JOURNAL OF PROBABILITY, 2018, 23
  • [49] Bounds on convergence for the empirical vector of the Curie-Weiss-Potts model with a non-zero external field vector
    Martschink, Bastian
    STATISTICS & PROBABILITY LETTERS, 2014, 88 : 118 - 126
  • [50] Local Central Limit Theorem for Multi-group Curie-Weiss Models
    Fleermann, Michael
    Kirsch, Werner
    Toth, Gabor
    JOURNAL OF THEORETICAL PROBABILITY, 2022, 35 (03) : 2009 - 2019