An Instrument for Accurate and Non-Invasive Screening of Skin Cancer Based on Multimodal Imaging

被引:9
|
作者
Diaz, Silvana [1 ]
Krohmer, Thomas [2 ]
Moreira, Alvaro [2 ]
Godoy, Sebastian E. [2 ]
Figueroa, Miguel [2 ]
机构
[1] Sicom Elect Int SA, Concepcion 1234, Chile
[2] Univ Concepcion, Dept Elect Engn, Coneepcion 4030000, Chile
来源
IEEE ACCESS | 2019年 / 7卷
关键词
Skin cancer screening; dynamic thermal imaging; infrared imaging; multimodal registration; image segmentation; classification; detection algorithms; embedded software; REAL-TIME; IN-VIVO; DIAGNOSIS; MELANOMA; DERMATOLOGISTS; MELAFIND; CLASSIFICATION; THERMOGRAPHY; PERFORMANCE; MANAGEMENT;
D O I
10.1109/ACCESS.2019.2956898
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present an instrument based on commodity embedded hardware, that implements an automatic procedure for early skin-cancer screening using dynamic thermal imaging. The procedure leverages image segmentation in the visible range and real-time multimodal registration to compute the temperature recovery curve (TRC) of suspicious skin lesions using thermal infrared video. The instrument implements two algorithms that infer the malignancy of the lesion from the computed TRCs. The first algorithm assumes that the TRCs are deterministic and infers the malignancy from the distance between the TRC of the suspicious lesion and its surrounding skin, which is assumed to be healthy tissue. The second algorithm models the TRC of the lesion as a random process and uses detection theory to statistically infer its malignancy from the eigenfunctions and corresponding eigenvalues of its covariance function. We built a prototype of the instrument using a Raspberry Pi 3 model B+ board, which acquires a visible-range image of the lesion at the beginning of the procedure and performs image segmentation in 62ms. Operating on a 400 x 400-pixel region-of-interest within the infrared video, the board performs frame-by-frame multimodal image registration and generates the TRCs in real time at more than 37 frames per second, thus eliminating the need to store video data for off-line processing. The statistical detection algorithm, which yields the best results, runs in 1.07s at the end of the procedure, and achieves a sensitivity of 98% and a specificity of 95% on a dataset of 116 volunteer subjects.
引用
收藏
页码:176646 / 176657
页数:12
相关论文
共 50 条
  • [21] Update on non-invasive imaging techniques in early diagnosis of non-melanoma skin cancer
    Reggiani, C.
    Manfredini, M.
    Mandel, V. D.
    Farnetani, F.
    Ciardo, S.
    Bassoli, S.
    Casari, A.
    Guida, S.
    Argenziano, G.
    Lallas, A.
    Ulrich, M.
    Pellacani, G.
    Longo, C.
    GIORNALE ITALIANO DI DERMATOLOGIA E VENEREOLOGIA, 2015, 150 (04): : 393 - 405
  • [22] Photonic Non-Invasive mmW and THz Imaging for Non-Melanoma Skin Cancer Detection
    Mohammad, Israa
    Rymanov, Vitaly
    Makhlouf, Sumer
    Stoffels, Ingo
    Klode, Joachim
    Tang, Xiao
    Ali, Muhsin
    Stoehr, Andreas
    2022 FIFTH INTERNATIONAL WORKSHOP ON MOBILE TERAHERTZ SYSTEMS (IWMTS), 2022,
  • [23] Non-invasive in vivo Raman spectroscopy of the skin for diabetes screening
    Guevara, Edgar
    Carlos Torres-Galvan, Juan
    Ramirez Elias, Miguel G.
    Luevano-Contreras, Claudia
    Javier Gonzalez, Francisco
    2017 PHOTONICS NORTH (PN), 2017,
  • [24] Non-invasive skin autofluorescence as a screening method for diabetic retinopathy
    Martinez-Garcia, Irene
    Cavero-Redondo, Ivan
    Alvarez-Bueno, Celia
    Pascual-Morena, Carlos
    Gomez-Guijarro, Maria Dolores
    DIABETES-METABOLISM RESEARCH AND REVIEWS, 2024, 40 (02)
  • [25] Uses of non-invasive imaging in the diagnosis of skin cancer: an overview of the currently available modalities
    Wassef, Cindy
    Rao, Babar K.
    INTERNATIONAL JOURNAL OF DERMATOLOGY, 2013, 52 (12) : 1481 - 1489
  • [26] Non-invasive multimodal optical coherence and photoacoustic tomography for human skin imaging (vol 7, 17975, 2017)
    Chen, Zhe
    Rank, Elisabet
    Meiburger, Kristen M.
    Sinz, Christoph
    Hodul, Andreas
    Zhang, Edward
    Hoover, Erich
    Minneman, Micheal
    Ensher, Jason
    Beard, Paul C.
    Kittler, Harald
    Leitgeb, Rainer A.
    Drexler, Wolfgang
    Liu, Mengyang
    SCIENTIFIC REPORTS, 2018, 8
  • [27] MULTIMODAL NON-INVASIVE IMAGING OF NASH DISEASE PROGRESSION IN A MOUSE MODEL
    Tseng, Jen-Chieh
    Stowman, Arin
    Stanley, Alexis
    Czernuszewicz, Tomasz
    Gessner, Ryan C.
    Peterson, Jeffrey D.
    HEPATOLOGY, 2022, 76 : S450 - S451
  • [28] Non-invasive multimodal functional imaging of the intestine with frozen micellar naphthalocyanines
    Zhang, Yumiao
    Jeon, Mansik
    Rich, Laurie J.
    Hong, Hao
    Geng, Jumin
    Zhang, Yin
    Shi, Sixiang
    Barnhart, Todd E.
    Alexandridis, Paschalis
    Huizinga, Jan D.
    Seshadri, Mukund
    Cai, Weibo
    Kim, Chulhong
    Lovell, Jonathan F.
    NATURE NANOTECHNOLOGY, 2014, 9 (08) : 631 - 638
  • [29] Skin cancer detection using non-invasive techniques
    Narayanamurthy, Vigneswaran
    Padmapriya, P.
    Noorasafrin, A.
    Pooja, B.
    Hema, K.
    Khan, Al'aina Yuhainis Firus
    Nithyakalyani, K.
    Samsuri, Fahmi
    RSC ADVANCES, 2018, 8 (49) : 28095 - 28130
  • [30] Non-invasive Imaging for Skin Cancers-the European Experience
    Guida, Stefania
    De Pace, Barbara
    Ciardo, Silvana
    Farnetani, Francesca
    Pellacani, Giovanni
    CURRENT DERMATOLOGY REPORTS, 2019, 8 (04) : 172 - 181