Achieving Fast Charge Separation and Low Nonradiative Recombination Loss by Rational Fluorination for High-Efficiency Polymer Solar Cells

被引:179
|
作者
Sun, Chenkai [1 ,2 ]
Pan, Fei [1 ,2 ]
Chen, Shanshan [3 ,4 ]
Wang, Rui [5 ,6 ]
Sun, Rui [7 ]
Shang, Ziya [1 ,2 ]
Qiu, Beibei [1 ,2 ]
Min, Jie [7 ]
Lv, Menglan [8 ]
Meng, Lei [1 ]
Zhang, Chunfeng [5 ,6 ]
Xiao, Min [5 ,6 ]
Yang, Changduk [4 ]
Li, Yongfang [1 ,2 ,9 ]
机构
[1] Chinese Acad Sci, Beijing Natl Lab Mol Sci, CAS Key Lab Organ Solids, Inst Chem, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Chem Sci, Beijing 100049, Peoples R China
[3] Chongqing Univ, MOE Key Lab Low Grade Energy Utilizat Technol & S, CQU NUS Renewable Energy Mat & Devices Joint Lab, Sch Energy & Power Engn, Chongqing 400044, Peoples R China
[4] Ulsan Natl Inst Sci & Technol, Dept Energy Engn, Sch Energy & Chem Engn, Low Dimens Carbon Mat Ctr, Ulsan 689798, South Korea
[5] Nanjing Univ, Natl Lab Solid State Microstruct, Sch Phys, Nanjing 210093, Jiangsu, Peoples R China
[6] Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Nanjing 210093, Jiangsu, Peoples R China
[7] Wuhan Univ, Inst Adv Studies, Wuhan 430072, Hubei, Peoples R China
[8] Guizhou Inst Technol, Sch Chem Engn, Guiyang 550003, Guizhou, Peoples R China
[9] Soochow Univ, Lab Adv Optoelect Mat, Coll Chem Chem Engn & Mat Sci, Suzhou 215123, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
charge separation; fluorination; low-cost copolymer donors; nonradiative recombination; voltage loss; OPEN-CIRCUIT VOLTAGE; PHOTOVOLTAIC CELLS; SELF-ORGANIZATION; PERFORMANCE; ACCEPTOR; ELECTRODES;
D O I
10.1002/adma.201905480
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Four low-cost copolymer donors of poly(thiophene-quinoxaline) (PTQ) derivatives are demonstrated with different fluorine substitution forms to investigate the effect of fluorination forms on charge separation and voltage loss (V-loss) of the polymer solar cells (PSCs) with the PTQ derivatives as donor and a A-DA'D-A-structured molecule Y6 as acceptor. The four PTQ derivatives are PTQ7 without fluorination, PTQ8 with bifluorine substituents on its thiophene D-unit, PTQ9, and PTQ10 with monofluorine and bifluorine substituents on their quinoxaline A-unit respectively. The PTQ8- based PSC demonstrates a low power conversion efficiency (PCE) of 0.90% due to the mismatch in the highest occupied molecular orbital (HOMO) energy levels alignment between the donor and acceptor. In contrast, the devices based on PTQ9 and PTQ10 show enhanced charge-separation behavior and gradually reduced V-loss, due to the gradually reduced nonradiative recombination loss in comparison with the PTQ7-based device. As a result, the PTQ10-based PSC demonstrates an impressive PCE of 16.21% with high open-circuit voltage and large short-circuit current density simultaneously, and its V-loss is reduced to 0.549 V. The results indicate that rational fluorination of the polymer donors is a feasible method to achieve fast charge separation and low V-loss simultaneously in the PSCs.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Fluorination with an enlarged dielectric constant prompts charge separation and reduces bimolecular recombination in non-fullerene organic solar cells with a high fill factor and efficiency > 13%
    Zhang, Xuning
    Zhang, Dongyang
    Zhou, Qian
    Wang, Rong
    Zhou, Jiyu
    Wang, Jianqiu
    Zhou, Huiqiong
    Zhang, Yuan
    NANO ENERGY, 2019, 56 : 494 - 501
  • [42] High-efficiency inverted solar cells based on a low bandgap polymer with excellent air stability
    Chu, Ta-Ya
    Tsang, Sai-Wing
    Zhou, Jiayun
    Verly, Pierre G.
    Lu, Jianping
    Beaupre, Serge
    Leclerc, Mario
    Tao, Ye
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2012, 96 (01) : 155 - 159
  • [43] High-efficiency organic solar cells with low voltage loss induced by solvent additive strategy
    Song, Jiali
    Zhu, Lei
    Li, Chao
    Xu, Jinqu
    Wu, Hongbo
    Zhang, Xuning
    Zhang, Yuan
    Tang, Zheng
    Liu, Feng
    Sun, Yanming
    MATTER, 2021, 4 (07) : 2542 - 2552
  • [44] Charge Separation and Recombination of Charge-Transfer Excitons in Donor-Acceptor Polymer Solar Cells
    Tsutsumi, Jun'ya
    Matsuzaki, Hiroyuki
    Kanai, Naoyuki
    Yamada, Toshikazu
    Hasegawa, Tatsuo
    JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (33): : 16769 - 16773
  • [45] Charge carrier management for developing high-efficiency perovskite solar cells
    Byranvand, Mahdi Malekshahi
    Saliba, Michael
    MATTER, 2021, 4 (06) : 1758 - 1759
  • [46] High-Efficiency Aqueous-Processed Polymer/CdTe Nanocrystals Planar Heterojunction Solar Cells with Optimized Band Alignment and Reduced Interfacial Charge Recombination
    Zeng, Qingsen
    Hu, Lu
    Cui, Jian
    Feng, Tanglue
    Du, Xiaohang
    Jin, Gan
    Liu, Fangyuan
    Ji, Tianjiao
    Li, Fenghong
    Zhang, Hao
    Yang, Bai
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (37) : 31345 - 31351
  • [47] Achieving Organic Solar Cells with an Efficiency of 18.80% by Reducing Nonradiative Energy Loss and Tuning Active Layer Morphology
    Si, Xiaodong
    Huang, Yuzhong
    Shi, Wendi
    Wang, Ruohan
    Ma, Kangqiao
    Zhang, Yunxin
    Wu, Simin
    Yao, Zhaoyang
    Li, Chenxi
    Wan, Xiangjian
    Chen, Yongsheng
    ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (47)
  • [48] Achieving high efficiency and low voltage loss simultaneously for non-fullerene organic solar cells
    Yang, Liwei
    Jia, Yanyan
    Yan, He
    SCIENCE CHINA-CHEMISTRY, 2019, 62 (04) : 405 - 406
  • [49] Achieving high efficiency and low voltage loss simultaneously for non-fullerene organic solar cells
    Liwei Yang
    Yanyan Jia
    He Yan
    Science China(Chemistry), 2019, 62 (04) : 405 - 406
  • [50] Achieving high efficiency and low voltage loss simultaneously for non-fullerene organic solar cells
    Liwei Yang
    Yanyan Jia
    He Yan
    Science China Chemistry, 2019, 62 : 405 - 406