Investigations into the seeding of instabilities due to x-ray preheat in beryllium-based inertial confinement fusion targets.

被引:7
|
作者
Loomis, E. N. [1 ]
Greenfield, S. R. [1 ]
Johnson, R. P. [1 ]
Cobble, J. A. [1 ]
Luo, S. N. [1 ]
Montgomery, D. S. [1 ]
Marinak, M. M. [2 ]
机构
[1] Los Alamos Natl Lab, Los Alamos, NM 87544 USA
[2] Lawrence Livermore Natl Lab, Livermore, CA 95281 USA
关键词
RAYLEIGH-TAYLOR INSTABILITY; RICHTMYER-MESHKOV INSTABILITY; STABILIZATION; DYNAMICS;
D O I
10.1063/1.3360929
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The geometry of inertial confinement fusion (ICF) capsules makes them susceptible to various types of hydrodynamic instabilities at different stages during an ICF implosion. From the beginnings of ICF research, it has been known that grain-level anisotropy and defects could be a significant source of instability seeding in solid beryllium capsules. We report on experiments conducted at the Trident laser facility [S. H. Batha et al., Rev. Sci. Instrum. 79, 10F305 (2008)] to measure dynamic surface roughening from hard x-ray preheat due to anisotropic thermal expansion. M-band emission from laser-produced gold plasma was used to heat beryllium targets with different amounts of copper doping to temperatures comparable to ICF ignition preheat levels. Dynamic roughening measurements were made on the surface away from the plasma at discrete times up to 8 ns after the beginning of the drive pulse using a surface displacement interferometer with nanometer scale sensitivity. Undoped large-grained targets were measured to roughen between 15 and 50 nm rms. Fine-grained, copper-doped targets were observed to roughen near the sensitivity limit of the interferometer. The results of this work have shed light on the effects of high-Z doping and microstructural refinement on the dynamics of differential thermal expansion and have shown that current ICF capsule designs using beryllium are very effective in reducing preheat related roughening ahead of the first shock. (C) 2010 American Institute of Physics. [doi:10.1063/1.3360929]
引用
收藏
页数:8
相关论文
共 50 条
  • [41] DEMONSTRATION OF AN X-RAY RING-APERTURE MICROSCOPE FOR INERTIAL-CONFINEMENT FUSION EXPERIMENTS
    RESS, D
    LERCHE, RA
    DASILVA, L
    APPLIED PHYSICS LETTERS, 1992, 60 (04) : 410 - 412
  • [42] A portable neutron/tunable x-ray source based on inertial electrostatic confinement
    Miley, GH
    APPLICATION OF ACCELERATORS IN RESEARCH AND INDUSTRY, 2001, 576 : 683 - 686
  • [43] Characterization of x-ray framing cameras for use in inertial confinement fusion and radiation hydrodynamics experiments
    Bakeman, MS
    Evans, SC
    Oertel, JA
    Walsh, PJ
    Barnes, CW
    FOURTH-GENERATION X-RAY SOURCES AND ULTRAFAST X-RAY DETECTORS, 2004, 5194 : 205 - 213
  • [44] Interest of x-ray lasers as plasma diagnostics: theoretical approach for inertial confinement fusion concerns
    Jacquemot, S
    Babonneau, D
    Bonnet, L
    Fortin, X
    APPLICATIONS OF X RAYS GENERATED FROM LASERS AND OTHER BRIGHT SOURCES, 1997, 3157 : 64 - 70
  • [45] Modeling of the composition of materials for soft X-ray sources used in research on inertial confinement fusion
    Denisov, OB
    Orlov, NY
    Gus'kov, SY
    Rozanov, VB
    Zmitrenko, NV
    Mikhaliov, AP
    PLASMA PHYSICS REPORTS, 2005, 31 (08) : 684 - 689
  • [46] A Study of Beryllium-Based Materials and Comparison of Their X-Ray Homogeneities According to Small-Angle Scattering Data
    Semenov, A. A.
    Volkov, V. V.
    Zabrodin, A. V.
    Gorlevskii, V. V.
    Sheverdyaev, M. S.
    Lizunov, A. V.
    Brylev, D. A.
    Anikin, A. S.
    Demin, A. V.
    Nebera, A. L.
    Morozov, I. A.
    Lesina, I. G.
    Kozlova, E. V.
    Klykov, S. S.
    Kupriyanov, I. B.
    Zhidelev, A. I.
    Asadchikov, V. E.
    Buzmakov, A. V.
    Roshchin, B. S.
    Dadinova, L. A.
    Chekrygina, D. I.
    Amarantov, S. V.
    Zhigalina, O. M.
    Khmelenin, D. N.
    Senin, R. A.
    Veligzhanin, A. A.
    Aleksandrov, P. A.
    CRYSTALLOGRAPHY REPORTS, 2018, 63 (06) : 874 - 882
  • [47] A portable neutron tunable X-ray source based on inertial electrostatic confinement
    Miley, GH
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 1999, 422 (1-3): : 16 - 20
  • [48] Characterizing laser preheat for laser-driven magnetized liner inertial fusion using soft x-ray emission
    Barnak, D. H.
    Bonino, M. J.
    Chang, P. -Y.
    Davies, J. R.
    Hansen, E. C.
    Harding, D. R.
    Peebles, J. L.
    Betti, R.
    PHYSICS OF PLASMAS, 2020, 27 (11)
  • [49] A Study of Beryllium-Based Materials and Comparison of Their X-Ray Homogeneities According to Small-Angle Scattering Data
    A. A. Semenov
    V. V. Volkov
    A. V. Zabrodin
    V. V. Gorlevskii
    M. S. Sheverdyaev
    A. V. Lizunov
    D. A. Brylev
    A. S. Anikin
    A. V. Demin
    A. L. Nebera
    I. A. Morozov
    I. G. Lesina
    E. V. Kozlova
    S. S. Klykov
    I. B. Kupriyanov
    A. I. Zhidelev
    V. E. Asadchikov
    A. V. Buzmakov
    B. S. Roshchin
    L. A. Dadinova
    D. I. Chekrygina
    S. V. Amarantov
    O. M. Zhigalina
    D. N. Khmelenin
    R. A. Senin
    A. A. Veligzhanin
    P. A. Aleksandrov
    Crystallography Reports, 2018, 63 : 874 - 882
  • [50] Masked-backlighter technique used to simultaneously image x-ray absorption and x-ray emission from an inertial confinement fusion plasma
    Marshall, F. J.
    Radha, P. B.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2014, 85 (11):