Investigations into the seeding of instabilities due to x-ray preheat in beryllium-based inertial confinement fusion targets.

被引:7
|
作者
Loomis, E. N. [1 ]
Greenfield, S. R. [1 ]
Johnson, R. P. [1 ]
Cobble, J. A. [1 ]
Luo, S. N. [1 ]
Montgomery, D. S. [1 ]
Marinak, M. M. [2 ]
机构
[1] Los Alamos Natl Lab, Los Alamos, NM 87544 USA
[2] Lawrence Livermore Natl Lab, Livermore, CA 95281 USA
关键词
RAYLEIGH-TAYLOR INSTABILITY; RICHTMYER-MESHKOV INSTABILITY; STABILIZATION; DYNAMICS;
D O I
10.1063/1.3360929
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The geometry of inertial confinement fusion (ICF) capsules makes them susceptible to various types of hydrodynamic instabilities at different stages during an ICF implosion. From the beginnings of ICF research, it has been known that grain-level anisotropy and defects could be a significant source of instability seeding in solid beryllium capsules. We report on experiments conducted at the Trident laser facility [S. H. Batha et al., Rev. Sci. Instrum. 79, 10F305 (2008)] to measure dynamic surface roughening from hard x-ray preheat due to anisotropic thermal expansion. M-band emission from laser-produced gold plasma was used to heat beryllium targets with different amounts of copper doping to temperatures comparable to ICF ignition preheat levels. Dynamic roughening measurements were made on the surface away from the plasma at discrete times up to 8 ns after the beginning of the drive pulse using a surface displacement interferometer with nanometer scale sensitivity. Undoped large-grained targets were measured to roughen between 15 and 50 nm rms. Fine-grained, copper-doped targets were observed to roughen near the sensitivity limit of the interferometer. The results of this work have shed light on the effects of high-Z doping and microstructural refinement on the dynamics of differential thermal expansion and have shown that current ICF capsule designs using beryllium are very effective in reducing preheat related roughening ahead of the first shock. (C) 2010 American Institute of Physics. [doi:10.1063/1.3360929]
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Beryllium-based multilayer X-ray optics
    Polkovnikov, V. N.
    Salashchenko, N. N.
    Svechnikov, M. V.
    Chkhalo, N. I.
    PHYSICS-USPEKHI, 2020, 63 (01) : 83 - 95
  • [2] Instability seeding mechanisms due to internal defects in inertial confinement fusion targets
    Miller, S. C.
    Goncharov, V. N.
    PHYSICS OF PLASMAS, 2022, 29 (08)
  • [3] Characterization of inertial confinement fusion targets using X-ray phase contrast imaging
    Wang, Kai
    Lei, Haile
    Li, Jun
    Lin, Wei
    Qi, Xiaobo
    Tang, Yongjian
    Liu, Yuanqiong
    OPTICS COMMUNICATIONS, 2014, 332 : 9 - 13
  • [4] Shock propagation, preheat, and x-ray burnthrough in indirect-drive inertial confinement fusion ablator materials
    Olson, RE
    Leeper, RJ
    Nobile, A
    Oertel, JA
    Chandler, GA
    Cochrane, K
    Dropinski, SC
    Evans, S
    Haan, SW
    Kaae, JL
    Knauer, JP
    Lash, K
    Mix, LP
    Nikroo, A
    Rochau, GA
    Rivera, G
    Russell, C
    Schroen, D
    Sebring, RJ
    Tanner, DL
    Turner, RE
    Wallace, RJ
    PHYSICS OF PLASMAS, 2004, 11 (05) : 2778 - 2789
  • [5] Mitigation of X-ray shadow seeding of hydrodynamic instabilities on inertial confinement fusion capsules using a reduced diameter fuel fill-tube
    MacPhee, A. G.
    Smalyuk, V. A.
    Landen, O. L.
    Weber, C. R.
    Robey, H. F.
    Alfonso, E. L.
    Biener, J.
    Bunn, T.
    Crippen, J. W.
    Farrell, M.
    Felker, S.
    Field, J. E.
    Hsing, W. W.
    Kong, C.
    Milovich, J.
    Moore, A.
    Nikroo, A.
    Rice, N.
    Stadermann, M.
    Wild, C.
    PHYSICS OF PLASMAS, 2018, 25 (05)
  • [6] X-ray shadow imprint of hydrodynamic instabilities on the surface of inertial confinement fusion capsules by the fuel fill tube
    MacPhee, A. G.
    Casey, D. T.
    Clark, D. S.
    Felker, S.
    Field, J. E.
    Haan, S. W.
    Hammel, B. A.
    Kroll, J.
    Landen, O. L.
    Martinez, D. A.
    Michel, P.
    Milovich, J.
    Moore, A.
    Nikroo, A.
    Rice, N.
    Robey, H. F.
    Smalyuk, V. A.
    Stadermann, M.
    Weber, C. R.
    PHYSICAL REVIEW E, 2017, 95 (03)
  • [7] Beryllium-Based Multilayer Mirrors for the Soft X-Ray and Extreme Ultraviolet Wavelength Ranges
    Vainer, Yu. A.
    Garakhin, S. A.
    Zuev, S. Yu.
    Nechay, A. N.
    Pleshkov, R. S.
    Polkovnikov, V. N.
    Salashchenko, N. N.
    Svechnikov, M. V.
    Sertsu, M. G.
    Smertin, R. M.
    Sokolov, A.
    Chkhalo, N. I.
    Schaefers, F.
    JOURNAL OF SURFACE INVESTIGATION, 2020, 14 (01): : 124 - 134
  • [8] On the accuracy of x-ray spectra modeling of inertial confinement fusion plasmas
    Glenzer, SH
    Fournier, KB
    Hammel, BA
    Lee, RW
    MacGowan, BJ
    Back, CA
    ATOMIC PROCESSES IN PLASMAS, 2000, 547 : 3 - 14
  • [9] X-ray crystal imagers for inertial confinement fusion experiments (invited)
    Aglitskiy, Y
    Lehecka, T
    Obenschain, S
    Pawley, C
    Brown, CM
    Seely, J
    REVIEW OF SCIENTIFIC INSTRUMENTS, 1999, 70 (01): : 530 - 535
  • [10] A high-energy x-ray microscope for inertial confinement fusion
    Marshall, FJ
    Bennett, GR
    REVIEW OF SCIENTIFIC INSTRUMENTS, 1999, 70 (01): : 617 - 619