Hydrogel-based protein microchips: Manufacturing, properties, and applications

被引:105
|
作者
Rubina, AY [1 ]
Dementieva, EI [1 ]
Stomakhin, AA [1 ]
Darii, EL [1 ]
Pan'kov, SV [1 ]
Barsky, VE [1 ]
Ivanov, SM [1 ]
Konovalova, EV [1 ]
Mirzabekov, AD [1 ]
机构
[1] Russian Acad Sci, VA Engelhardt Mol Biol Inst, Moscow 119991, Russia
关键词
D O I
10.2144/03345rr01
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Here a simple, reproducible, and versatile method is described for manufacturing protein and ligand chips. The photo-induced copolymerization of acrylamide based gel monomers with different probes (oligonucleotides, DNA, proteins, and low-molecular ligands) modified by the introduction of methacrylic groups takes place in drops on a glass or silicone surface. All probes are uniformly and chemically fixed with a high yield within the whole volume of hydrogel semispherical chip elements that are chemically attached to the surface. Purified enzymes, antibodies, antigens, and other proteins, as well as complex protein mixtures such as cell lysates, were immobilized on a chip. Avidin- and oligohistidine-tagged proteins can be immobilized within biotin- and Ni-nitrilotriacetic acid-modified gel elements. Most gel-immobilized proteins maintain their biological properties for at least six months. Fluorescence and chemiluminescence microscopy were used cis efficient methods for the quantitative analysis of the microchips. Direct on-chip matrix-assisted laser desorption ionization-time Of flight mass spectrometry was used for the qualitative identification of interacting molecules and to analyze tryptic peptides after the digestion of proteins in individual gel elements. We also demonstrate other useful properties of protein microchips and their application to proteomics and diagnostics.
引用
收藏
页码:1008 / +
页数:12
相关论文
共 50 条
  • [21] Review on Hydrogel-Based Flexible Supercapacitors for Wearable Applications
    Tadesse, Melkie Getnet
    Luebben, Joern Felix
    GELS, 2023, 9 (02)
  • [22] Bionic Hydrogel-based Stretchable Devices for Bioelectronics Applications
    Zhang, Yitao
    Yuan, Yiqing
    Duan, Haiyang
    Zhu, Pengcheng
    Mao, Yanchao
    JOURNAL OF BIONIC ENGINEERING, 2025,
  • [23] Hydrogel-based commercial products for biomedical applications: A review
    Cascone, Sara
    Lamberti, Gaetano
    INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2020, 573
  • [24] Hydrogel-based Nanocomposite Plasmonic Sensors for Biomedical Applications
    Miranda, Bruno
    Moretta, Rosalba
    Dardano, Principia
    Rea, Ilaria
    Forestiere, Carlo
    De Stefano, Luca
    PROCEEDINGS OF 2020 ITALIAN CONFERENCE ON OPTICS AND PHOTONICS (ICOP), 2020,
  • [25] Biocompatibility of hydrogel-based scaffolds for tissue engineering applications
    Naahidi, Sheva
    Jafari, Mousa
    Logan, Megan
    Wang, Yujie
    Yuan, Yongfang
    Bae, Hojae
    Dixon, Brian
    Chen, P.
    BIOTECHNOLOGY ADVANCES, 2017, 35 (05) : 530 - 544
  • [26] Hydrogel-based preparation of cell aggregates for biomedical applications
    Zhang, Jiabin
    Yun, Seonho
    Du, Yuguang
    Zannettino, Andrew
    Zhang, Hu
    APPLIED MATERIALS TODAY, 2020, 20
  • [27] Injectable hydrogel-based scaffolds for tissue engineering applications
    Portnov, Tanya
    Shulimzon, Tiberiu R.
    Zilberman, Meital
    REVIEWS IN CHEMICAL ENGINEERING, 2017, 33 (01) : 91 - 107
  • [28] Hydrogel-Based Motors
    Wang, Ke
    Ren, Jiaoyu
    Yang, Sicheng
    Wang, Hong
    ADVANCED MATERIALS TECHNOLOGIES, 2021, 6 (10)
  • [29] Hydrogel-Based Biosensors
    Voellmecke, Katharina
    Afroz, Rowshon
    Bierbach, Sascha
    Brenker, Lee Josephine
    Fruecht, Sebastian
    Glass, Alexandra
    Giebelhaus, Ryland
    Hoppe, Axel
    Kanemaru, Karen
    Lazarek, Michal
    Rabbe, Lukas
    Song, Longfei
    Suarez, Andrea Velasco
    Wu, Shuang
    Serpe, Michael
    Kuckling, Dirk
    GELS, 2022, 8 (12)
  • [30] Hydrogel-Based Microdevices
    Yang, Yao-Joe
    2015 International symposium on VLSI Design, Automation and Test (VLSI-DAT), 2015,