Detection of tritium generated by proton exchange membrane electrolysis by optimization of electrolysis conditions

被引:5
|
作者
Kang, Kijoon [1 ]
Bae, Jun Woo [1 ]
Kim, Hee Reyoung [1 ]
机构
[1] Ulsan Natl Inst Sci & Technol, Dept Nucl Engn, UNIST Gil 50, Ulsan 44919, South Korea
基金
新加坡国家研究基金会;
关键词
Proton exchange membrane; Electrolysis; Tritium detection; Current optimization; WATER;
D O I
10.1007/s10967-019-06771-8
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The electrolysis conditions in a proton exchange membrane (PEM) cell were optimized by varying the current supplied; the detection efficiency for gaseous tritium generated from the PEM cell under optimized electrolysis conditions was analyzed. The current was optimized to 7 A. Under the optimized current condition, the change in activity of the tritiated water before and after electrolysis was 200 +/- 11 kBq. When tritiated water with tritium activity concentration of 2912 kBq/L was electrolyzed, the detection efficiency was 31.3 +/- 1.3%. Moreover, the minimum detectable activity of gaseous tritium was 10.3 +/- 0.8 kBq/m(3) in 5 min.
引用
收藏
页码:1417 / 1421
页数:5
相关论文
共 50 条
  • [21] Effects of interfacial contact under different operating conditions in proton exchange membrane water electrolysis
    Kang, Zhenye
    Schuler, Tobias
    Chen, Yingying
    Wang, Min
    Zhang, Feng-Yuan
    Bender, Guido
    ELECTROCHIMICA ACTA, 2022, 429
  • [22] Response behaviour of proton exchange membrane water electrolysis to hydrogen production under dynamic conditions
    Gong, Junda
    Sun, Cong
    Shi, Huangang
    Tan, Wenyi
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (79) : 30642 - 30652
  • [23] Effects of interfacial contact under different operating conditions in proton exchange membrane water electrolysis
    Kang, Zhenye
    Schuler, Tobias
    Chen, Yingying
    Wang, Min
    Zhang, Feng-Yuan
    Bender, Guido
    Electrochimica Acta, 2022, 429
  • [24] Enhancing proton exchange membrane water electrolysis by building electron/proton pathways
    Zhu, Liyan
    Zhang, Hao
    Zhang, Aojie
    Tian, Tian
    Shen, Yuhan
    Wu, Mingjuan
    Li, Neng
    Tang, Haolin
    ADVANCED POWDER MATERIALS, 2024, 3 (04):
  • [25] Multi-objective optimization of channel structure for a proton exchange membrane water electrolysis cell
    Zhuang, Yubin
    Cui, Pan
    Long, Rui
    Liu, Wei
    Liu, Zhichun
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 49 : 337 - 352
  • [26] Assessment of the three most developed water electrolysis technologies: Alkaline Water Electrolysis, Proton Exchange Membrane and Solid-Oxide Electrolysis
    Sebbahi, Seddiq
    Nabil, Nouhaila
    Alaoui-Belghiti, Amine
    Laasri, Said
    Rachidi, Samir
    Hajjaji, Abdelowahed
    MATERIALS TODAY-PROCEEDINGS, 2022, 66 : 140 - 145
  • [27] Directly coated membrane electrode assemblies for proton exchange membrane water electrolysis
    Holzapfel, Peter
    Buehler, Melanie
    Chuyen Van Pham
    Hegge, Friedemann
    Boehm, Thomas
    McLaughlin, David
    Breitwieser, Matthias
    Thiele, Simon
    ELECTROCHEMISTRY COMMUNICATIONS, 2020, 110
  • [28] Effect of Nafion Ionomer on Proton Exchange Membrane Electrolysis of Benzyl Alcohol
    Abdelnasser, Shady
    Matsushita, Hibiki
    Kurokawa, Hideki
    Ogihara, Hitoshi
    CHEMISTRY LETTERS, 2023, 52 (07) : 560 - 563
  • [29] Degradation of Proton Exchange Membrane (PEM) Electrolysis: The Influence of Current Density
    Gago, A. S.
    Buerkle, J.
    Lettenmeier, P.
    Morawietz, T.
    Handl, M.
    Hiesgen, R.
    Burgraf, F.
    Valles, P. A.
    Friedrich, K. A.
    POLYMER ELECTROLYTE FUEL CELLS AND ELECTROLYZERS 18 (PEFC&E 18), 2018, 86 (13): : 695 - 700
  • [30] Water electrolysis with proton exchange membranes
    Kopitzke, RW
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1996, 212 : 6 - SOCED