Approaching disorder-free transport in high-mobility conjugated polymers

被引:879
|
作者
Venkateshvaran, Deepak [1 ]
Nikolka, Mark [1 ]
Sadhanala, Aditya [1 ]
Lemaur, Vincent [2 ]
Zelazny, Mateusz [1 ]
Kepa, Michal [3 ]
Hurhangee, Michael [4 ,5 ]
Kronemeijer, Auke Jisk [1 ]
Pecunia, Vincenzo [1 ]
Nasrallah, Iyad [1 ]
Romanov, Igor [1 ]
Broch, Katharina [1 ]
McCulloch, Iain [4 ,5 ]
Emin, David [6 ]
Olivier, Yoann [2 ]
Cornil, Jerome [2 ]
Beljonne, David [2 ]
Sirringhaus, Henning [1 ]
机构
[1] Univ Cambridge, Cavendish Lab, Optoelect Grp, JJ Thomson Ave, Cambridge CB3 0HE, England
[2] Univ Mons, Lab Chem Novel Mat, B-7000 Mons, Belgium
[3] Univ Edinburgh, Ctr Sci Extreme Condit, Edinburgh EH9 3JZ, Midlothian, Scotland
[4] Univ London Imperial Coll Sci Technol & Med, Dept Chem, London SW7 2AZ, England
[5] Univ London Imperial Coll Sci Technol & Med, Ctr Plast Elect, London SW7 2AZ, England
[6] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA
基金
英国工程与自然科学研究理事会;
关键词
FIELD-EFFECT TRANSISTORS; HIGH-PERFORMANCE; ELECTRONIC TRANSPORT; SEEBECK COEFFICIENT; LOCALIZED STATES; AMBIPOLAR; HOLE;
D O I
10.1038/nature13854
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Conjugated polymers enable the production of flexible semiconductor devices that can be processed from solution at low temperatures. Over the past 25 years, device performance has improved greatly as a wide variety of molecular structures have been studied(1). However, one major limitation has not been overcome; transport properties in polymer films are still limited by pervasive conformational and energetic disorder(2-5). This not only limits the rational design of materials with higher performance, but also prevents the study of physical phenomena associated with an extended pi-electron delocalization along the polymer backbone. Here we report a comparative transport study of several high-mobility conjugated polymers by field-effect-modulated Seebeck, transistor and sub-bandgap optical absorption measurements. We show that in several of these polymers, most notably in a recently reported, indacenodithiophene-based donor-acceptor copolymer with a near-amorphous microstructure(6), the charge transport properties approach intrinsic disorder-free limits at which all molecular sites are thermally accessible. Molecular dynamics simulations identify the origin of this long sought-after regime as a planar, torsion-free backbone conformation that is surprisingly resilient to side-chain disorder. Our results provide molecular-design guidelines for 'disorder-free' conjugated polymers.
引用
收藏
页码:384 / 388
页数:5
相关论文
共 50 条
  • [21] Control of the Hydroquinone/Benzoquinone Redox State in High-Mobility Semiconducting Conjugated Coordination Polymers
    Huang, Xing
    Li, Yang
    Fu, Shuai
    Ma, Chao
    Lu, Yang
    Wang, Mingchao
    Zhang, Peng
    Li, Ze
    He, Feng
    Huang, Chuanhui
    Liao, Zhongquan
    Zou, Ye
    Zhou, Shengqiang
    Helm, Manfred
    Petkov, Petko St.
    Wang, Hai I.
    Bonn, Mischa
    Li, Jian
    Xu, Wei
    Dong, Renhao
    Feng, Xinliang
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2024, 63 (20)
  • [22] 25th Anniversary Article: High-Mobility Hole and Electron Transport Conjugated Polymers: How Structure Defines Function
    Olivier, Yoann
    Niedzialek, Dorota
    Lemaur, Vincent
    Pisula, Wojciech
    Muellen, Klaus
    Koldemir, Unsal
    Reynolds, John R.
    Lazzaroni, Roberto
    Cornil, Jerome
    Beljonne, David
    ADVANCED MATERIALS, 2014, 26 (14) : 2119 - 2136
  • [23] Asymmetric electron and hole transport in a high-mobility n-type conjugated polymer
    Wetzelaer, Gert-Jan A. H.
    Kuik, Martijn
    Olivier, Yoann
    Lemaur, Vincent
    Cornil, Jerome
    Fabiano, Simone
    Loi, Maria Antonietta
    Blom, Paul W. M.
    PHYSICAL REVIEW B, 2012, 86 (16):
  • [24] Electron transport and electrical properties in a high-mobility n-type conjugated polymer
    Wang, L. G.
    Liu, M. L.
    Zhu, J. J.
    Cheng, L. F.
    OPTOELECTRONICS AND ADVANCED MATERIALS-RAPID COMMUNICATIONS, 2017, 11 (3-4): : 202 - 206
  • [25] Approaching the Dirac Point in High-Mobility Multilayer Epitaxial Graphene
    Orlita, M.
    Faugeras, C.
    Plochocka, P.
    Neugebauer, P.
    Martinez, G.
    Maude, D. K.
    Barra, A. -L.
    Sprinkle, M.
    Berger, C.
    de Heer, W. A.
    Potemski, M.
    PHYSICAL REVIEW LETTERS, 2008, 101 (26)
  • [26] Collaborative Morphological and Electrical Regulation of High-Mobility Conjugated Polymers via a Multifunctional Polymeric Additive
    Xu, Chenhui
    An, Chuanbin
    Gao, Mengyuan
    Zhang, Xuwen
    He, Chunyong
    Dong, Weijia
    Wang, Tianzuo
    Liu, Yuqian
    Deng, Yunfeng
    Ye, Long
    Han, Yang
    Geng, Yanhou
    MACROMOLECULES, 2024, 57 (22) : 10792 - 10801
  • [27] Rational Design of High-Mobility Semicrystalline Conjugated Polymers with Tunable Charge Polarity: Beyond Benzobisthiadiazole-Based Polymers
    Wang, Yang
    Hasegawa, Tsukasa
    Matsumoto, Hidetoshi
    Mori, Takehiko
    Michinobu, Tsuyoshi
    ADVANCED FUNCTIONAL MATERIALS, 2017, 27 (02)
  • [28] Narrow bandgap conjugated polymers based on a high-mobility polymer template for visibly transparent photovoltaic devices
    Yuan, Jianyu
    Ford, Michael
    Ding, Guanqun
    Dong, Huilong
    Wang, Ming
    Han, Lu
    Li, Youyong
    Bazan, Guillermo C.
    Ma, Wanli
    JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (44) : 17333 - 17343
  • [29] Molecular-weight dependence of interchain polaron delocalization and exciton bandwidth in high-mobility conjugated polymers
    Chang, Jui-Fen
    Clark, Jenny
    Zhao, Ni
    Sirringhaus, Henning
    Breiby, Dag W.
    Andreasen, Jens W.
    Nielsen, Martin M.
    Giles, Mark
    Heeney, Martin
    McCulloch, Iain
    PHYSICAL REVIEW B, 2006, 74 (11)
  • [30] Approaching the intrinsic band gap in suspended high-mobility graphene nanoribbons
    Lin, Ming-Wei
    Ling, Cheng
    Agapito, Luis A.
    Kioussis, Nicholas
    Zhang, Yiyang
    Cheng, Mark Ming-Cheng
    Wang, Wei L.
    Kaxiras, Efthimios
    Zhou, Zhixian
    PHYSICAL REVIEW B, 2011, 84 (12)