Second Maximal Subgroups of a Sylow p-Subgroup and the p-Nilpotency of Finite Groups

被引:0
|
作者
Xu, Y. [1 ]
Li, X. H. [2 ]
机构
[1] Henan Univ Sci & Technol, Sch Math & Stat, Luoyang, Peoples R China
[2] Soochow Univ, Sch Math Sci, Suzhou, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Normal Subgroup; Finite Group; Simple Group; Maximal Subgroup; Prime Divisor;
D O I
10.1007/s11253-014-0971-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A subgroup H of a group G is said to be weakly s-semipermutable in G if G has a subnormal subgroup T such that HT = G and H a (c) T a parts per thousand currency sign , where is the subgroup of H generated by all subgroups of H that are s-semipermutable in G. The main aim of the paper is to study the p-nilpotency of a group for which every second maximal subgroup of its Sylow p-subgroups is weakly s-semipermutable. Some new results are obtained.
引用
收藏
页码:775 / 780
页数:6
相关论文
共 50 条
  • [31] m-embedded Subgroups and p-nilpotency of Finite Groups
    Xu, Yong
    Zhang, Xinjian
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2014, 57 (04): : 884 - 889
  • [32] New Characterizations of p-Nilpotency and Sylow Tower Groups
    Li, Changwen
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2013, 36 (03) : 845 - 854
  • [34] A p-nilpotency criterion for finite groups
    Diaz Ramos, A.
    Viruel, A.
    ACTA MATHEMATICA HUNGARICA, 2019, 157 (01) : 154 - 157
  • [35] A CRITERION OF p-NILPOTENCY OF FINITE GROUPS
    Zhang, Xinjian
    Li, Xianhua
    COMMUNICATIONS IN ALGEBRA, 2012, 40 (10) : 3652 - 3657
  • [36] On p-nilpotency and supersolvability of finite groups
    Meng, Xiaohan
    Chen, Ruifang
    Zhao, Xianhe
    RICERCHE DI MATEMATICA, 2025,
  • [37] WEAKLY S-SUPPLEMENTED SUBGROUPS AND P-NILPOTENCY OF FINITE GROUPS
    Qiao, Shouhong
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2013, 44 (06): : 795 - 808
  • [38] Sylowizers and p-nilpotency in finite groups
    Zhang, Boru
    Lu, Jiakuan
    Meng, Wei
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2025,
  • [39] A p-nilpotency criterion for finite groups
    A. Díaz Ramos
    A. Viruel
    Acta Mathematica Hungarica, 2019, 157 : 154 - 157
  • [40] A note on p-nilpotency of finite groups
    Li, Changwen
    Huang, Jianhong
    Hu, Bin
    MONATSHEFTE FUR MATHEMATIK, 2016, 179 (02): : 253 - 258