Contradictory needs for high scalable, high speed, low latency, and low-cost architectures turn researchers' attention toward optoelectronic architectures. This is due to its ability to provide high scalability and high performance at a manageable cost, by imposing some optical links in suitable locations while designing the architecture. In this paper, the most common optoelectronic architectures are overviewed and evaluated in terms of various topological properties, namely, size, diameter, cost, bisection width, maximum and minimum node degree, and Hamiltonian path and cycle. Thus, most of these architectures are based on Optical Transpose Interconnection System (OTIS). The evaluated optoelectronic architectures in this paper are OTIS-Hypercube, Extended OTIS-n-Cube, Enhanced OTIS-Cube, OTIS-Ring, OTIS k-Ary n-Cube, OTIS-Mesh, OTIS-Mesh of Trees, OTIS Hyper Hexa-Cell, and Optical Chained-Cubic Tree. The obtained results showed the strengths and weaknesses of the mentioned optoelectronic architectures to help designers and developers to investigate and decide on the suitable architecture for their problem of interest.