Persistence of Invariant Tori in Integrable Hamiltonian Systems Under Almost Periodic Perturbations

被引:6
|
作者
Huang, Peng [1 ]
Li, Xiong [1 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
关键词
Invariant tori; Hamiltonian systems; Almost periodic solutions; Boundedness; Superquadratic potentials; BOUNDEDNESS;
D O I
10.1007/s00332-018-9467-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we are concerned with the existence of invariant tori in nearly integrable Hamiltonian systems H = h(y) + f (x, y, t), where y is an element of D subset of R-n with D being an open bounded domain, x is an element of T-n, f (x, y, t) is a real analytic almost periodic function in t with the frequency omega = (. . . , omega(lambda), . . .)(lambda)(is an element of Z) is an element of R-Z. As an application, we will prove the existence of almost periodic solutions and the boundedness of all solutions for the second-order differential equations with superquadratic potentials depending almost periodically on time.
引用
收藏
页码:1865 / 1900
页数:36
相关论文
共 50 条
  • [21] On Invariant Tori of Nearly Integrable Hamiltonian Systems with Quasiperiodic Perturbation
    Zhang, Dongfeng
    Cheng, Rong
    FIXED POINT THEORY AND APPLICATIONS, 2010,
  • [22] Numerical invariant tori of symplectic integrators for integrable Hamiltonian systems
    Zhaodong Ding
    Zaijiu Shang
    ScienceChina(Mathematics), 2018, 61 (09) : 29 - 50
  • [23] Homoclinic orbits for invariant tori of nearly integrable Hamiltonian systems
    Koltsova, O. Yu.
    Lerman, L. M.
    Delshams, A.
    Gutierrez, P.
    DOKLADY MATHEMATICS, 2006, 73 (02) : 217 - 220
  • [24] On Invariant Tori of Nearly Integrable Hamiltonian Systems with Quasiperiodic Perturbation
    Dongfeng Zhang
    Rong Cheng
    Fixed Point Theory and Applications, 2010
  • [25] Homoclinic orbits for invariant tori of nearly integrable Hamiltonian systems
    O. Yu. Koltsova
    L. M. Lerman
    A. Delshams
    P. Gutiérrez
    Doklady Mathematics, 2006, 73 : 217 - 220
  • [26] Numerical invariant tori of symplectic integrators for integrable Hamiltonian systems
    Zhaodong Ding
    Zaijiu Shang
    Science China Mathematics, 2018, 61 : 1567 - 1588
  • [27] Invariant tori with prescribed frequency for nearly integrable hamiltonian systems
    Lu, Xuezhu
    Xu, Junxiang
    JOURNAL OF MATHEMATICAL PHYSICS, 2014, 55 (08)
  • [28] Invariant tori of locally Hamiltonian systems close to conditionally integrable systems
    Loveikin Yu.V.
    Parasyuk I.O.
    Ukrainian Mathematical Journal, 2007, 59 (1) : 70 - 99
  • [29] Numerical invariant tori of symplectic integrators for integrable Hamiltonian systems
    Ding, Zhaodong
    Shang, Zaijiu
    SCIENCE CHINA-MATHEMATICS, 2018, 61 (09) : 1567 - 1588
  • [30] Persistence of Invariant Tori in Infinite-Dimensional Hamiltonian Systems
    Peng Huang
    Qualitative Theory of Dynamical Systems, 2022, 21