CO2 Chemisorption Behavior of Coordination-Derived Phenolate Sorbents

被引:17
|
作者
Suo, Xian [1 ]
Yang, Zhenzhen [2 ]
Fu, Yuqing [3 ]
Do-Thanh, Chi-Linh [1 ]
Chen, Hao [1 ]
Luo, Huimin [2 ]
Jiang, De-en [3 ]
Mahurin, Shannon M. [2 ]
Xing, Huabin [4 ]
Dai, Sheng [1 ,2 ]
机构
[1] Univ Tennessee, Dept Chem, Joint Inst Adv Mat, Knoxville, TN 37996 USA
[2] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA
[3] Univ Calif Riverside, Dept Chem, Riverside, CA 92521 USA
[4] Zhejiang Univ, Coll Chem & Biol Engn, Minist Educ, Key Lab Biomass Chem Engn, Hangzhou 310027, Peoples R China
关键词
carbon dioxide; chemisorption; coordination effect; crown ether; phenolate sorbents; CARBON-DIOXIDE CAPTURE; IONIC LIQUIDS; CROWN-ETHERS; AMBIENT AIR; ABSORPTION; CHEMISTRY; OXIDATION;
D O I
10.1002/cssc.202100666
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
CO2 chemisorption via C-O bond formation is an efficient methodology in carbon capture especially using phenolate-based ionic liquids (ILs) as the sorbents to afford carbonate products. However, most of the current IL systems involve alkylphosphonium cations, leading to side reactions via the ylide intermediate pathway. It is important to figure out the CO2 chemisorption behavior of phenolate-derived sorbents using inactive and easily accessible cation counterparts without active protons. Herein, phenolate-based systems were constructed via coordination between alkali metal cations with crown ethers to avoid the participation of active protons in CO2 chemisorption. Reaction pathway study revealed that CO2 uptake could be achieved by O-C bond formation to afford carbonate. CO2 uptake capacity and reaction enthalpy were significantly influenced by the coordination effect, alkali metal types, and alkyl groups on the benzene ring.
引用
收藏
页码:2854 / 2859
页数:6
相关论文
共 50 条
  • [41] Behavior of different calcium-based sorbents in a calcination/carbonation cycle for CO2 capture
    Alvarez, Diego
    Pena, Miguel
    Borrego, Angeles G.
    ENERGY & FUELS, 2007, 21 (03) : 1534 - 1542
  • [42] Sol-gel-derived, CaO-based, ZrO2-stabilized CO2 sorbents
    Broda, Marcin
    Mueller, Christoph R.
    FUEL, 2014, 127 : 94 - 100
  • [43] Characterization and evaluation of synthetic Dawsonites as CO2 sorbents
    Lundvall, Fredrik
    Kalantzopoulos, Georgios N.
    Wragg, David S.
    Arstad, Bjornar
    Blom, Richard
    Sjastad, Anja O.
    Fjellvag, Helmer
    FUEL, 2019, 236 : 747 - 754
  • [44] Phase-changing sorbents for CO2 capture
    Perry, Robert J.
    Genovese, Sarah
    Wood, Benjamin
    Westendorf, Tiffany
    O'Brien, Michael
    Meketa, Matthew
    Farnum, Rachel
    McDermott, John
    Sultanova, Irina
    Vipperla, Ravi-Kumar
    Wichmann, Lisa
    Enick, Robert
    Hong, Lei
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 243
  • [45] Novel solid sorbents for CO2 capture.
    Soong, Y
    Champagne, KJ
    Gray, ML
    Stevens, RW
    Toochinda, P
    Chuang, SSC
    Siriwardane, RV
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2001, 221 : U508 - U508
  • [46] Silica Nanoparticles as Supports for Regenerable CO2 Sorbents
    Meth, Sergio
    Goeppert, Alain
    Prakash, G. K. Surya
    Olah, George A.
    ENERGY & FUELS, 2012, 26 (05) : 3082 - 3090
  • [47] Study of the Novel KMgAl Sorbents for CO2 Capture
    Li, Lei
    Zhang, Bingsheng
    Wang, Feng
    Zhao, Ning
    Xiao, Fukui
    Wei, Wei
    Sun, Yuhan
    ENERGY & FUELS, 2013, 27 (09) : 5388 - 5396
  • [48] Activated Carbons from Molasses as CO2 Sorbents
    Mlodzik, J.
    Srenscek-Nazzal, J.
    Narkiewicz, U.
    Morawski, A. W.
    Wrobel, R. J.
    Michalkiewicz, B.
    ACTA PHYSICA POLONICA A, 2016, 129 (03) : 402 - 404
  • [49] Polymerized Ionic Liquid Sorbents for CO2 Separation
    Samadi, Azadeh
    Kemmerlin, Ruben K.
    Husson, Scott M.
    ENERGY & FUELS, 2010, 24 (10) : 5797 - 5804
  • [50] Secondary Amine Functional Disiloxanes as CO2 Sorbents
    O'Brien, Michael J.
    Farnum, Rachel L.
    Perry, Robert J.
    Genovese, Sarah E.
    ENERGY & FUELS, 2014, 28 (05) : 3326 - 3331