MHD FLOW OF FRACTIONAL NEWTONIAN FLUID EMBEDDED IN A POROUS MEDIUM VIA ATANGANA-BALEANU FRACTIONAL DERIVATIVES

被引:13
|
作者
Abro, Kashif Ali [1 ]
Khan, Ilyas [2 ]
机构
[1] Mehran Univ Engn & Technol, Dept Basic Sci & Related Studies, Jamshoro, Pakistan
[2] Ton Duc Thang Univ, Fac Math & Stat, Ho Chi Minh City, Vietnam
来源
关键词
Atangana-Baleanu fractional derivative; magnetohydrodynamics; porous medium; rheological effects; PLATE;
D O I
10.3934/dcdss.2020021
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The novelty of this research is to utilize the modern approach of Atangana-Baleanu fractional derivative to electrically conducting viscous fluid embedded in porous medium. The mathematical modeling of the governing partial differential equations is characterized via non-singular and non-local kernel. The set of governing fractional partial differential equations is solved by employing Laplace transform technique. The analytic solutions are investigated for the velocity field corresponding with shear stress and expressed in term of special function namely Fox-H function, moreover a comparative study with an ordinary and Atangana-Baleanu fractional models is analyzed for viscous flow in presence and absence of magnetic field and porous medium. The Atangana-Baleanu fractional derivative is observed more reliable and appropriate for handling mathematical calculations of obtained solutions. Finally, graphical illustration is depicted via embedded rheological parameters and comparison of models plotted for smaller and larger time on the fluid flow.
引用
收藏
页码:377 / 387
页数:11
相关论文
共 50 条
  • [41] Radiative MHD bioconvective nanofluid flow due to gyrotactic microorganisms using Atangana-Baleanu Caputo fractional derivative
    Arafa, Anas A. M.
    Rashed, Z. Z.
    Ahmed, Sameh E.
    PHYSICA SCRIPTA, 2021, 96 (05)
  • [42] Atangana-Baleanu fractional model for electro-osmotic flow of viscoelastic fluids
    Ali, Farhad
    Iftikhar, Muhammad
    Khan, Ilyas
    Sheikh, Nadeem Ahmad
    CHAOS SOLITONS & FRACTALS, 2019, 124 : 125 - 133
  • [43] NUMERICAL ANALYSIS OF COUPLED FRACTIONAL DIFFERENTIAL EQUATIONS WITH ATANGANA-BALEANU FRACTIONAL DERIVATIVE
    Koca, Ilknur
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2019, 12 (03): : 475 - 486
  • [44] On the fuzzy fractional differential equation with interval Atangana-Baleanu fractional derivative approach
    Allahviranloo, Tofigh
    Ghanbari, Behzad
    CHAOS SOLITONS & FRACTALS, 2020, 130
  • [45] Optimally analyzed fractional Coronavirus model with Atangana-Baleanu derivative
    Butt, A. I. K.
    Ahmad, W.
    Rafiq, M.
    Ahmad, N.
    Imran, M.
    RESULTS IN PHYSICS, 2023, 53
  • [46] Fractional view analysis of the diffusion equations via a natural Atangana-Baleanu operator
    Jan, Himayat Ullah
    Ullah, Hakeem
    Fiza, Mehreen
    Khan, Ilyas
    Eldin, Sayed M.
    ALEXANDRIA ENGINEERING JOURNAL, 2023, 83 : 19 - 26
  • [47] FRACTIONAL INTEGRAL INEQUALITIES FOR PREINVEX FUNCTIONS VIA ATANGANA-BALEANU INTEGRAL OPERATORS
    Karaoglan, Ali
    Set, Erhan
    Akdemir, Ahmet Ocak
    Ozdemir, M. Emin
    MISKOLC MATHEMATICAL NOTES, 2024, 25 (01) : 329 - 347
  • [48] Fractional Integral Inequalities via Atangana-Baleanu Operators for Convex and Concave Functions
    Akdemir, Ahmet Ocak
    Karaoglan, Ali
    Ragusa, Maria Alessandra
    Set, Erhan
    JOURNAL OF FUNCTION SPACES, 2021, 2021
  • [49] A creep constitutive model based on Atangana-Baleanu fractional derivative
    Deng, Huilin
    Zhou, Hongwei
    Wei, Qing
    Li, Lifeng
    Jia, Wenhao
    MECHANICS OF TIME-DEPENDENT MATERIALS, 2023, 27 (04) : 1171 - 1186
  • [50] Modelling the spread of Ebola virus with Atangana-Baleanu fractional operators
    Koca, Ilknur
    EUROPEAN PHYSICAL JOURNAL PLUS, 2018, 133 (03):