Disentangled Multi-Relational Graph Convolutional Network for Pedestrian Trajectory Prediction

被引:0
|
作者
Bae, Inhwan [1 ]
Jeon, Hae-Gon [1 ]
机构
[1] Gwangju Inst Sci & Technol GIST, Gwangju, South Korea
基金
新加坡国家研究基金会;
关键词
ATTENTION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Pedestrian trajectory prediction is one of the important tasks required for autonomous navigation and social robots in human environments. Previous studies focused on estimating social forces among individual pedestrians. However, they did not consider the social forces of groups on pedestrians, which results in over-collision avoidance problems. To address this problem, we present a Disentangled Multi-Relational Graph Convolutional Network (DMRGCN) for socially entangled pedestrian trajectory prediction. We first introduce a novel disentangled multi-scale aggregation to better represent social interactions, among pedestrians on a weighted graph. For the aggregation, we construct the multi-relational weighted graphs based on distances and relative displacements among pedestrians. In the prediction step, we propose a global temporal aggregation to alleviate accumulated errors for pedestrians changing their directions. Finally, we apply DropEdge into our DMRGCN to avoid the overfitting issue on relatively small pedestrian trajectory datasets. Through the effective incorporation of the three parts within an end-to-end framework, DMRGCN achieves state-of-the-art performances on a variety of challenging trajectory prediction benchmarks.
引用
收藏
页码:911 / 919
页数:9
相关论文
共 50 条
  • [41] MDST-DGCN: A Multilevel Dynamic Spatiotemporal Directed Graph Convolutional Network for Pedestrian Trajectory Prediction
    Liu, Shaohua
    Liu, Haibo
    Wang, Yisu
    Sun, Jingkai
    Mao, Tianlu
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2022, 2022
  • [42] A Graph Convolutional Neural Network Model for Trajectory Prediction
    Di, Zichao
    Zhou, Yue
    Chen, Kun
    Chen, Zongzhi
    THIRTEENTH INTERNATIONAL CONFERENCE ON GRAPHICS AND IMAGE PROCESSING (ICGIP 2021), 2022, 12083
  • [43] Graph Partition Convolution Neural Network for Pedestrian Trajectory Prediction
    Wang, Ruiyang
    Li, Ming
    Zhang, Pin
    Wen, Fan
    2021 IEEE 33RD INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2021), 2021, : 457 - 462
  • [44] PTPGC: Pedestrian trajectory prediction by graph attention network with ConvLSTM
    Yang, Juan
    Sun, Xu
    Wang, Rong Gui
    Xue, Li Xia
    Robotics and Autonomous Systems, 2022, 148
  • [45] SGCN:Sparse Graph Convolution Network for Pedestrian Trajectory Prediction
    Shi, Liushuai
    Wang, Le
    Long, Chengjiang
    Zhou, Sanping
    Zhou, Mo
    Niu, Zhenxing
    Hua, Gang
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 8990 - 8999
  • [46] PTPGC: Pedestrian trajectory prediction by graph attention network with ConvLSTM
    Yang, Juan
    Sun, Xu
    Wang, Rong Gui
    Xue, Li Xia
    ROBOTICS AND AUTONOMOUS SYSTEMS, 2022, 148
  • [47] EGAT: Extended Graph Attention Network for Pedestrian Trajectory Prediction
    Kong, Wei
    Liu, Yun
    Li, Hui
    Wang, Chuanxu
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2021, 2021
  • [48] Joint demand prediction for multimodal systems: A multi-task multi-relational spatiotemporal graph neural network approach
    Liang, Yuebing
    Huang, Guan
    Zhao, Zhan
    TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2022, 140
  • [49] Multi-information-based convolutional neural network with attention mechanism for pedestrian trajectory prediction
    Wang, Ruiping
    Cui, Yong
    Song, Xiao
    Chen, Kai
    Fang, Hong
    IMAGE AND VISION COMPUTING, 2021, 107 (107)
  • [50] Multi-relational dynamic graph representation learning
    Duan, Pingtao
    Ren, Xiangsheng
    Liu, Yuting
    NEUROCOMPUTING, 2023, 558