Triazolo Based-Thiadiazole Derivatives. Synthesis, Biological Evaluation and Molecular Docking Studies

被引:22
|
作者
Kamoutsis, Charalampos [1 ]
Fesatidou, Maria [2 ]
Petrou, Anthi [2 ]
Geronikaki, Athina [2 ]
Poroikov, Vladimir [3 ]
Ivanov, Marija [4 ]
Sokovic, Marina [4 ]
Ciric, Ana [4 ]
Carazo, Alejandro [5 ]
Mladenka, Premysl [5 ]
机构
[1] Univ Patras, Sch Pharm, Patras 26504, Greece
[2] Aristotle Univ Thessaloniki, Sch Pharm, Thessaloniki 54124, Greece
[3] Inst Biomed Chem, Lab Struct Funct Drug Design, Pogodinskaya Str 10,Bldg 8, Moscow 119121, Russia
[4] Univ Belgrade, Inst Biol Res Sinisa Stankov, Natl Inst Republ Serbia, Blvd Despot Stefan 142, Belgrade 11000, Serbia
[5] Charles Univ Prague, Dept Pharmacol & Toxicol, Fac Pharm, Akad Heyrovskeho 1203, Hradec Kralove 50005, Czech Republic
来源
ANTIBIOTICS-BASEL | 2021年 / 10卷 / 07期
关键词
thiadiazole derivatives; triazole; antimicrobial; antifungal; biofilm; docking; toxicity; ANTIFUNGAL ACTIVITY; ANTIMICROBIAL ACTIVITY; AGENTS SYNTHESIS; DESIGN; INHIBITION; DISCOVERY; POTENT; 1,3,4-THIADIAZOLE; INFECTIONS; ISOXAZOLE;
D O I
10.3390/antibiotics10070804
中图分类号
R51 [传染病];
学科分类号
100401 ;
摘要
The goal of this research is to investigate the antimicrobial activity of nineteen previously synthesized 3,6-disubstituted-1,2,4-triazolo[3,4-b]-1,3,4-thiadiazole derivatives. The compounds were tested against a panel of three Gram-positive and three Gram-negative bacteria, three resistant strains, and six fungi. Minimal inhibitory, bactericidal, and fungicidal concentrations were determined by a microdilution method. All of the compounds showed antibacterial activity that was more potent than both reference drugs, ampicillin and streptomycin, against all bacteria tested. Similarly, they were also more active against resistant bacterial strains. The antifungal activity of the compounds was up to 80-fold higher than ketoconazole and from 3 to 40 times higher than bifonazole, both of which were used as reference drugs. The most active compounds (2, 3, 6, 7, and 19) were tested for their inhibition of P. aeruginosa biofilm formation. Among them, compound 3 showed significantly higher antibiofilm activity and appeared to be equipotent with ampicillin. The prediction of the probable mechanism by docking on antibacterial targets revealed that E. coli MurB is the most suitable enzyme, while docking studies on antifungal targets indicated a probable involvement of CYP51 in the mechanism of antifungal activity. Finally, the toxicity testing in human cells confirmed their low toxicity both in cancerous cell line MCF7 and non-cancerous cell line HK-2.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] Synthesis, biological evaluation and molecular docking studies of chromone hydrazone derivatives as α-glucosidase inhibitors
    Wang, Guangcheng
    Chen, Ming
    Wang, Jing
    Peng, Yaping
    Li, Luyao
    Xie, ZhenZhen
    Deng, Bing
    Chen, Shan
    Li, Wenbiao
    BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, 2017, 27 (13) : 2957 - 2961
  • [22] Synthesis, Biological Evaluation, and in-Silico Molecular Docking Studies of Multifunctional Thiazolidine Derivatives
    Bin Muhsinah, Abdullatif
    Annadurai, Sivakumar
    Alharbi, Mohammed M.
    Mahnashi, Mater
    Abou-Salim, Mahrous A.
    Hassan, Mohd. Zaheen
    Mabkhot, Yahia N.
    POLYCYCLIC AROMATIC COMPOUNDS, 2024, 44 (06) : 3975 - 3989
  • [23] Synthesis, biological evaluation, and molecular docking studies of novel diclofenac derivatives as antibacterial agents
    Hamed, Mahmoud M.
    Sayed, Mostafa
    Abdel-Mohsen, Shawkat A.
    Saddik, Abdelreheem Abdelfatah
    Ibrahim, Omneya A.
    El-Dean, Adel M. Kamal
    Tolba, Mahmoud S.
    JOURNAL OF MOLECULAR STRUCTURE, 2023, 1273
  • [24] Design, Synthesis, Molecular Docking Studies, and Biological Evaluation of Pyrazoline Incorporated Isoxazole Derivatives
    T. Radhika
    A. Vijay
    B. V. Harinadha
    B. Madhavareddy
    Russian Journal of Bioorganic Chemistry, 2020, 46 : 429 - 437
  • [25] Facile synthesis, biological evaluation and molecular docking studies of novel substituted azole derivatives
    Rafiq, Muhammad
    Saleem, Muhammad
    Jabeen, Farukh
    Hanif, Muhammad
    Seo, Sung-Yum
    Kang, Sung Kwon
    Lee, Ki Hwan
    JOURNAL OF MOLECULAR STRUCTURE, 2017, 1138 : 177 - 191
  • [26] Synthesis, biological evaluation, and molecular docking studies of cinnamic acyl 1,3,4-thiadiazole amide derivatives as novel antitubulin agents
    Yang, Xian-Hui
    Wen, Qing
    Zhao, Ting-Ting
    Sun, Jian
    Li, Xi
    Xing, Man
    Lu, Xiang
    Zhu, Hai-Liang
    BIOORGANIC & MEDICINAL CHEMISTRY, 2012, 20 (03) : 1181 - 1187
  • [27] Synthesis and biological evaluation of tetrahydroquinoline derivatives.
    Takeuchi, K
    Kohn, TJ
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1996, 211 : 226 - ORGN
  • [28] One-Pot Synthesis of Triazolo-Heterolignans: Biological Evaluation and Molecular Docking Studies as Tubulin Inhibitors
    Reddy, Chada Raji
    Subbarao, Muppidi
    Vijaykumar, Jonnalagadda
    Jadav, Surender Singh
    Sasane, Nilesh
    Valleti, Reddi Rani
    Supriya, Bhukya
    Ummanni, Ramesh
    ANTI-CANCER AGENTS IN MEDICINAL CHEMISTRY, 2018, 18 (12) : 1702 - 1710
  • [29] Synthesis, Characterization, Biological Activity, and Molecular Docking Study of Some New Sulfamethoxazole Derivatives.
    Sager, Athra G.
    Abaies, Jawad Kadhim
    Issa, Rusul Abdulridah
    BAGHDAD SCIENCE JOURNAL, 2024, 21 (11) : 3411 - 3427
  • [30] Thiadiazole-thiazole derivatives as potent anti-tubercular agents: Synthesis, biological evaluation, and In silico docking studies
    Shaikh, Samin A.
    Labhade, Shivaji R.
    Kale, Raju R.
    Pachorkar, Prajakta Y.
    Meshram, Rohan J.
    Jain, Kamlesh S.
    Labhade, Hrishikesh S.
    Bhanushali, Dipak D.
    More, Rahul A.
    Nerkar, Charushila K.
    Chobe, Santosh S.
    Marathe, Aniket N.
    Wakchaure, Satish N.
    Boraste, Deepak R.
    EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY REPORTS, 2024, 12