A closed form expression for a sum of products of Fibonacci numbers

被引:0
|
作者
Ohtsuka, Hideyuki
机构
来源
FIBONACCI QUARTERLY | 2021年 / 59卷 / 02期
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:189 / 190
页数:2
相关论文
共 50 条
  • [31] An Alternating Sum of Fibonacci and Lucas Numbers of Orderk
    Dafnis, Spiros D.
    Philippou, Andreas N.
    Livieris, Ioannis E.
    MATHEMATICS, 2020, 8 (09)
  • [32] SUM FORMULAE OF GENERALIZED FIBONACCI AND LUCAS NUMBERS
    Cerin, Zvonko
    Bitim, Bahar Demirturk
    Keskin, Refik
    HONAM MATHEMATICAL JOURNAL, 2018, 40 (01): : 199 - 210
  • [33] Sum and Difference of Powers of Two Fibonacci Numbers
    Taclay, Richard J.
    INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2024, 19 (04): : 1155 - 1158
  • [34] On the reciprocal sum of the fourth power of Fibonacci numbers
    Hwang, WonTae
    Park, Jong-Do
    Song, Kyunghwan
    OPEN MATHEMATICS, 2022, 20 (01): : 1642 - 1655
  • [35] A sum divisible by four consecutive Fibonacci numbers
    Ohtsuka, Hideyuki
    FIBONACCI QUARTERLY, 2020, 58 (04): : 377 - 377
  • [36] A sum of product of Fibonacci numbers that is identically zero
    Dresel, LAG
    FIBONACCI QUARTERLY, 2000, 38 (05): : 471 - 472
  • [37] On Fibonacci numbers of the form qkyP.
    Bugeaud, Y
    Mignotte, M
    Siksek, S
    COMPTES RENDUS MATHEMATIQUE, 2004, 339 (05) : 327 - 330
  • [38] CLOSED FORM EXPRESSION FOR SUM OF POWERS OF FIRST N INTEGERS
    FEDER, PI
    AMERICAN STATISTICIAN, 1974, 28 (01): : 37 - 37
  • [39] The Relationship between the Sum of Reciprocal Golden Section Numbers and the Fibonacci Numbers
    Fang, Haiquan
    Xue, Huifeng
    Zhou, Tiejun
    2017 5TH INTERNATIONAL CONFERENCE ON COMPUTER-AIDED DESIGN, MANUFACTURING, MODELING AND SIMULATION (CDMMS 2017), 2017, 1834
  • [40] Fibonacci numbers which are products of two balancing numbers
    Erduvan, Fatih
    Keskin, Refik
    ANNALES MATHEMATICAE ET INFORMATICAE, 2019, 50 : 57 - 70