A closed form expression for a sum of products of Fibonacci numbers

被引:0
|
作者
Ohtsuka, Hideyuki
机构
来源
FIBONACCI QUARTERLY | 2021年 / 59卷 / 02期
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:189 / 190
页数:2
相关论文
共 50 条
  • [1] A closed form for a Fibonacci sum
    Edwards, S
    FIBONACCI QUARTERLY, 2005, 43 (03): : 279 - 279
  • [2] Closed form expressions for sums with Fibonacci and Lucas numbers
    Ohtsuka, Hideyuki
    FIBONACCI QUARTERLY, 2020, 58 (04): : 378 - 379
  • [3] Closed form for a sum of Tribonacci Lucas numbers
    Frontczak, Robert
    FIBONACCI QUARTERLY, 2020, 58 (04): : 379 - 379
  • [4] Asymptotic behavior of reciprocal sum of two products of Fibonacci numbers
    Ho-Hyeong Lee
    Jong-Do Park
    Journal of Inequalities and Applications, 2020
  • [5] Asymptotic behavior of reciprocal sum of two products of Fibonacci numbers
    Lee, Ho-Hyeong
    Park, Jong-Do
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2020, 2020 (01)
  • [6] ON THE SUM OF RECIPROCAL FIBONACCI NUMBERS
    Ohtsuka, Hideyuki
    Nakamura, Shigeru
    FIBONACCI QUARTERLY, 2008, 46-47 (02): : 153 - 159
  • [7] A Sum of Inverse of Fibonacci Numbers
    Bruckman, Paul S.
    Cooke, Charles K.
    Greubel, G. C.
    Hendel, Russell J.
    Hillman, Rebecca A.
    Seibert, Jaroslav
    FIBONACCI QUARTERLY, 2008, 46-47 (01): : 89 - 89
  • [8] A Sum of Hyperbolic Cosines of Fibonacci Numbers
    Ohtsuka, Hideyuki
    AMERICAN MATHEMATICAL MONTHLY, 2019, 126 (02): : 185 - 185
  • [9] A Binomial Sum of Generalized Fibonacci Numbers
    Plaza, Angel
    Smith, Jason L.
    Abel, Ulrich
    Bataille, Michel
    Boyadzhiev, Khristo N.
    Bradie, Brian
    Fedak, I. V.
    Fleischman, Dmitry
    Frontczak, Robert
    Ohtsuka, Hideyuki
    Schumacher, Raphael
    Stadler, Albert
    Terr, David
    FIBONACCI QUARTERLY, 2020, 58 (03): : 275 - 276
  • [10] The Infinite Sum of Reciprocal of the Fibonacci Numbers
    Guo Jie ZHANG Department of Mathematics
    Journal of Mathematical Research with Applications, 2011, (06) : 1030 - 1034