The mechanical property of Rana chensinensis skin collagen/poly(L-lactide) fibrous membrane

被引:21
|
作者
Zhang, Mei [1 ]
Wang, Jiamian [1 ]
Xu, Wenyu [1 ]
Luan, Jiashuang [1 ]
Li, Xueqi [1 ]
Zhang, Yujing [1 ]
Dong, Henan [1 ]
Sun, Dahui [2 ]
机构
[1] Jilin Univ, Coll Quartermaster Technol, Changchun 130062, Peoples R China
[2] Jilin Univ, Norman Bethune Hosp 1, Changchun 130021, Peoples R China
关键词
Electrospinning; Mechanical property; Nanocomposite; Surfaces; FTIR; COLLAGEN; NANOFIBERS; SCAFFOLDS; CHITOSAN;
D O I
10.1016/j.matlet.2014.10.085
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Rana chensinensis skin collagen/poly(L-lactide) (PLLA) composite scaffolds were first fabricated by electrospinning. The nanofibrous matrices were evaluated for their potential mechanical property as skin substitutes. The morphological and mechanical properties of the electrospun nanofibers were evaluated. The electrospun collagen/PLLA composite nanofibers showed the cross section had different shapes to pure collagen fiber. The addition of PLLA to collagen increased the mechanical property of the nanofibers, which were higher than those of pure collagen film, It is also expected that both the hydrogen bonding interaction and the fiber morphologies may play a crucial role in the mechanical properties of nanofiber filaments. Therefore, this work provides a promising approach to fabricate scaffolds for skin wound dressing. (C) 2014 Published by Elsevier B.V.
引用
收藏
页码:467 / 470
页数:4
相关论文
共 50 条
  • [21] Effect of poly(L-lactide) chain length on microstructural and thermo-mechanical properties of poly(L-lactide)-b-poly (butylene carbonate)-b-poly(L-lactide) triblock copolymers
    Konwar, Debanga B.
    Sethy, Sucharita
    Satapathy, Bhabani K.
    Jacob, Josemon
    POLYMER, 2017, 123 : 87 - 99
  • [22] Morphology and mechanical property of quenched poly(L-lactide)/N,N-dimethylacetamide gels
    Inukai, Shunya
    Kurokawa, Naruki
    Endo, Fuyuaki
    Maeda, Tomoki
    Hotta, Atsushi
    POLYMER, 2022, 242
  • [23] Biodegradation of poly(L-lactide)
    Tokiwa, Y
    Jarerat, A
    BIOTECHNOLOGY LETTERS, 2004, 26 (10) : 771 - 777
  • [24] Biodegradable tough blends of poly(L-lactide) and poly(castor oil)-poly(L-lactide) copolymer
    Huang, Shaoyong
    Sun, Hai
    Sun, Jingru
    Li, Gao
    Chen, Xuesi
    MATERIALS LETTERS, 2014, 133 : 87 - 90
  • [25] Degradation of poly (L-lactide).
    Albertsson, AC
    Khabbaz, F
    Hakkarainen, M
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2001, 221 : U355 - U355
  • [26] Plasticization of Poly-L-lactide with L-Lactide, D-Lactide, and D,L-Lactide Monomers
    Lopez-Rodriguez, N.
    Sarasua, J. R.
    POLYMER ENGINEERING AND SCIENCE, 2013, 53 (10): : 2073 - 2080
  • [27] Biodegradation of poly(l-lactide)
    Yutaka Tokiwa
    Amnat Jarerat
    Biotechnology Letters, 2004, 26 : 771 - 777
  • [28] Miscibility and Crystallization of Poly(L-lactide)/Poly(ethylene glycol) and Poly(L-lactide)/Poly(ε-caprolactone) Blends
    Jen-Ming Yang
    Hsin-Lung Chen
    Jiang-Wen You
    Jenn Chiu Hwang
    Polymer Journal, 1997, 29 : 657 - 662
  • [29] Functionalization of poly(L-lactide) nanofibrous scaffolds with bioactive collagen molecules
    Chiu, Jonathan B.
    Liu, Cheng
    Hsiao, Benjamin S.
    Chu, Benjamin
    Hadjiargyrou, Michael
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2007, 83A (04) : 1117 - 1127
  • [30] Poly(L-lactide) - XI. Lactide formation by thermal depolymerisation of poly(L-lactide) in a closed system
    Tsuji, H
    Fukui, I
    Daimon, H
    Fujie, K
    POLYMER DEGRADATION AND STABILITY, 2003, 81 (03) : 501 - 509