Neuron's Spikes Noise Level Classification Using Hidden Markov Models

被引:0
|
作者
Haggag, Sherif [1 ]
Mohamed, Shady [1 ]
Bhatti, Asim [1 ]
Haggag, Hussein [1 ]
Nahavandi, Saeid [1 ]
机构
[1] Deakin Univ, Ctr Intelligent Syst Res, Geelong, Vic 3217, Australia
关键词
Hidden Markov Model; Mel-Frequency Cepstrum Coefficient; Multichannel systems; neural signal; SYSTEM;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Considering that the uncertainty noise produced the decline in the quality of collected neural signal, this paper proposes a signal quality assessment method for neural signal. The method makes an automated measure to detect the noise levels in neural signal. Hidden Markov Models were used to build a classification model that classifies the neural spikes based on the noise level associated with the signal. This neural quality assessment measure will help doctors and researchers to focus on the patterns in the signal that have high signal to noise ratio and carry more information.
引用
收藏
页码:501 / 508
页数:8
相关论文
共 50 条
  • [21] Transmission Line Fault Classification Using Hidden Markov Models
    Arouche Freire, Jean Carlos
    Garcez Castro, Adriana Rosa
    Homci, Marcia Salomao
    Meiguins, Bianchi Serique
    De Morais, Jefferson Magalhaes
    [J]. IEEE ACCESS, 2019, 7 : 113499 - 113510
  • [22] Auroral Sequence Representation and Classification Using Hidden Markov Models
    Yang, Qiuju
    Liang, Jimin
    Hu, Zejun
    Zhao, Heng
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2012, 50 (12): : 5049 - 5060
  • [23] Disturbance classification using Hidden Markov Models and Vector Quantization
    Abdel-Galil, TK
    El-Saadany, EF
    Youssef, AM
    Salama, MMA
    [J]. IEEE TRANSACTIONS ON POWER DELIVERY, 2005, 20 (03) : 2129 - 2135
  • [24] A Study on Classification of Heart Sounds Using Hidden Markov Models
    Hee-Keun, Kim
    Young-Joo, Chung
    [J]. JOURNAL OF THE ACOUSTICAL SOCIETY OF KOREA, 2006, 25 (03): : 144 - 150
  • [25] Movement EEG Classification Using Parallel Hidden Markov Models
    Dobias, Martin
    St'astny, Jakub
    [J]. 2016 21ST INTERNATIONAL CONFERENCE ON APPLIED ELECTRONICS (AE), 2016, : 65 - 68
  • [26] Improving Time Series Classification Using Hidden Markov Models
    Esmael, Bilal
    Arnaout, Arghad
    Fruhwirth, Rudolf K.
    Thonhauser, Gerhard
    [J]. 2012 12TH INTERNATIONAL CONFERENCE ON HYBRID INTELLIGENT SYSTEMS (HIS), 2012, : 502 - 507
  • [27] MARKET CUSTOMERS CLASSIFICATION USING HIDDEN MARKOV MODELS TOOLKIT
    Ben Ayed, Alaidine
    Selouani, Sid-Ahmed
    [J]. 2013 INTERNATIONAL CONFERENCE ON COMPUTER APPLICATIONS TECHNOLOGY (ICCAT), 2013,
  • [28] TEXTURE CLASSIFICATION USING NONCAUSAL HIDDEN MARKOV-MODELS
    POVLOW, BR
    DUNN, SM
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1995, 17 (10) : 1010 - 1014
  • [29] Web sites thematic classification using Hidden Markov Models
    Serradura, L
    Slimane, M
    Vincent, N
    [J]. SIXTH INTERNATIONAL CONFERENCE ON DOCUMENT ANALYSIS AND RECOGNITION, PROCEEDINGS, 2001, : 1094 - 1098
  • [30] Classification of Network Traffic via Packet-Level Hidden Markov Models
    Dainotti, Alberto
    de Donato, Walter
    Pescape, Antonio
    Rossi, Pierluigi Salvo
    [J]. GLOBECOM 2008 - 2008 IEEE GLOBAL TELECOMMUNICATIONS CONFERENCE, 2008,