Study of Cold Ar Atmospheric Pressure Plasma Jet Generated With the Tapered Quartz Tube

被引:0
|
作者
Hao, Zhiyuan [1 ]
Ji, Shengchang [1 ]
机构
[1] Xi An Jiao Tong Univ, State Key Lab Elect Insulat & Power Equipment, Xian 710049, Peoples R China
关键词
Argon plasma jet; contraction ratio; jet length; wind tunnel;
D O I
10.1109/TPS.2014.2320874
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In this paper, a cold atmospheric-pressure plasma jet is generated in argon using a single-electrode configuration with the tapered quartz tube. The design of quartz tube is based on the theory of wind tunnel. The lower portion of the tube is divided into two parts: 1) contraction section and 2) test section. Electrical and optical diagnostics are conducted on a plasma jet device, the experimental results show that when the contraction ratio gets higher, the velocity of exit flow is more evenly distributed and the length of atmospheric pressure plasma jet is longer. It shows that a high-concentrated structure is effective to make the argon gas flow more stable and faster.
引用
收藏
页码:2456 / 2457
页数:2
相关论文
共 50 条
  • [11] Cold plasma brush generated at atmospheric pressure
    Duan, Yixiang
    Huang, C.
    Yu, Q. S.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2007, 78 (01):
  • [12] Transfer of a cold atmospheric pressure plasma jet through a long flexible plastic tube
    Kostov, Konstantin G.
    Machida, Munemasa
    Prysiazhnyi, Vadym
    Honda, Roberto Y.
    PLASMA SOURCES SCIENCE & TECHNOLOGY, 2015, 24 (02):
  • [13] Investigation on Atmospheric Pressure Plasma Jet Array in Ar
    Qian, Chen
    Fang, Zhi
    Yang, Jingru
    Kang, Mingrui
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2014, 42 (10) : 2438 - 2439
  • [14] Inactivation of Escherichia coli using atmospheric pressure cold plasma jet with thin quartz tubes
    Fan, Zhiqiang
    Zhong, Jinyi
    Li, Zhongwen
    Zheng, Yongchao
    Wang, Zhizhen
    Bai, Shupei
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2021, 54 (45)
  • [15] Tungsten Nanoparticles Generated in an Atmospheric Pressure Plasma Jet
    Mueller, Martin
    Dworschak, Maren
    Benedikt, Jan
    Kienle, Lorenz
    PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION, 2024,
  • [16] Analysis of Gas Composition of a Cold Plasma Jet Generated on the Basis of Atmospheric Pressure Microwave Discharge
    Antipov, S. N.
    Gadzhiev, M. Kh.
    Il'ichev, M. V.
    Tyuftyaev, A. S.
    Chistolinov, A. V.
    Yusupov, D. I.
    PLASMA PHYSICS REPORTS, 2024, 50 (05) : 653 - 658
  • [17] Analysis of gas composition of a cold plasma jet generated on the basis of atmospheric pressure microwave discharge
    Antipov S.N.
    Gadzhiev M.Kh.
    Il’ichev M.V.
    Tyuftyaev A.S.
    Chistolinov A.V.
    Yusupov D.I.
    Applied Physics, 2024, 24 (01): : 5 - 12
  • [18] Dual Atmospheric-Pressure Plasma Jet With He and Ar Gases in Theta-Shaped Tube
    Kim, Jae Young
    Gu, Hal-Bon
    Ko, Yang-Suk
    Kim, Sung-O
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2011, 39 (11) : 2302 - 2303
  • [19] Study of Cold Atmospheric Plasma Jet at the End of Flexible Plastic Tube for Microbial Decontamination
    Kostov, Konstantin G.
    Nishime, Thalita M. C.
    Machida, Munemasa
    Borges, Aline C.
    Prysiazhnyi, Vadym
    Koga-Ito, Cristiane Y.
    PLASMA PROCESSES AND POLYMERS, 2015, 12 (12) : 1383 - 1391
  • [20] Characteristic and Application Study of Cold Atmospheric-Pressure Nitrogen Plasma Jet
    Liu, Xin
    Chen, Faze
    Huang, Shuai
    Yang, Xiaolong
    Lu, Yao
    Zhou, Wenlong
    Xu, Wenji
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2015, 43 (06) : 1959 - 1968