On a weighted Sobolev embedding on the upper half-space in a borderline case

被引:2
|
作者
Abreu, E. A. M. [1 ]
Medeiros, E. S. [2 ]
Yang, J. [3 ]
机构
[1] Univ Fed Minas Gerais, Dept Matemat, BR-70230161 Belo Horizonte, MG, Brazil
[2] Univ Fed Paraiba, Dept Matemat, BR-58051900 Joao Pessoa, Paraiba, Brazil
[3] Jiangxi Normal Univ Nanchang, Dept Math, Nanchang 330022, Jiangxi, Peoples R China
关键词
Weighted Sobolev embedding; Trudinger-Moser inequality; Neumann boundary condition; Upper half-space; ELLIPTIC PROBLEM; CRITICAL GROWTH; INEQUALITIES;
D O I
10.1007/s10231-022-01217-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of this paper is to establish some weighted Sobolev inequalities, which are the borderline cases of the Sobolev embedding on the upper half-space. We use this inequality to derive a weighted Trudinger-Moser-type inequality. Our proofs rely on a simple decomposition which is rearrangement free. As an application of our results, we address the existence of solutions for a class of elliptic problems with exponential critical growth.
引用
收藏
页码:2715 / 2732
页数:18
相关论文
共 50 条
  • [31] Weighted norm estimates for gradients of half-space extensions
    Wheeden, RL
    Wilson, JM
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1995, 44 (03) : 917 - 969
  • [32] DUAL OF WEIGHTED H-1 OF HALF-SPACE
    MUCKENHOUPT, B
    WHEEDEN, RL
    STUDIA MATHEMATICA, 1978, 63 (01) : 57 - 79
  • [33] The resolvent relation of Sobolev for vector integral transfer equations in a half-space
    N. B. Engibaryan
    Astronomy Reports, 2017, 61 : 624 - 630
  • [34] The Resolvent Relation of Sobolev for Vector Integral Transfer Equations in a Half-Space
    Engibaryan, N. B.
    ASTRONOMY REPORTS, 2017, 61 (07) : 624 - 630
  • [35] HARDY-SOBOLEV INEQUALITIES IN THE HALF-SPACE FOR DOUBLE PHASE FUNCTIONALS
    Mizuta, Yoshihiro
    Shimomura, Tetsu
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2021, 51 (06) : 2159 - 2169
  • [36] Critical boundary value problems in the upper half-space
    Furtado, Marcelo F.
    da Silva, Joao Pablo P.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2021, 212
  • [37] MOTION OF A VIBRATOR ON A HALF-SPACE AND ON A LAYERED HALF-SPACE
    FARRELL, WE
    GEOPHYSICS, 1979, 44 (03) : 332 - 332
  • [38] Classical and quantum particles in the brachistochrone upper half-space
    S. Habib Mazharimousavi
    The European Physical Journal Plus, 137
  • [39] p-Harmonic Functions in the Upper Half-space
    Abreu, E.
    Clemente, R.
    do O, J. M.
    Medeiros, E.
    POTENTIAL ANALYSIS, 2024, 60 (04) : 1383 - 1406
  • [40] On the Growth Behavior of Hypermonogenic Functions on Upper Half-Space
    Constales, D.
    De Almeida, R.
    Krausshar, R. S.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS 1 AND 2, 2009, 1168 : 757 - +