Iterated Watersheds, A Connected Variation of K-Means for Clustering GIS Data

被引:7
|
作者
Soor, Sampriti [1 ]
Challa, Aditya [1 ]
Danda, Sravan [1 ]
Sagar, B. S. Daya [1 ]
Najman, Laurent [2 ]
机构
[1] Indian Stat Inst, Syst Sci & Informat Unit, Bangalore 560059, Karnataka, India
[2] Univ Paris Est, ESIEE Paris, ENPC, LIGM UMR 8049,CNRS,UPEMLV, F-93162 Noisy Le Grand, France
关键词
Clustering algorithms; Partitioning algorithms; Cost function; Approximation algorithms; Image segmentation; Roads; Graph clustering; K-means; E-governance; watersheds; IMAGE; ALGORITHMS;
D O I
10.1109/TETC.2019.2910147
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this article, we propose a novel algorithm to obtain a solution to the clustering problem with an additional constraint of connectivity. This is achieved by suitably modifying K-Means algorithm to include connectivity constraints. The modified algorithm involves repeated application of watershed transform, and hence is referred to as iterated watersheds. Detailed analysis of the algorithm is performed using toy examples. Iterated watersheds is compared with several image segmentation algorithms. It has been shown that iterated watersheds performs better than methods such as spectral clustering, isoperimetric partitioning, and K-Means on various measures. To illustrate the applicability of iterated watersheds - a simple problem of placing emergency stations and suitable cost function is considered. Using real world road networks of various cities, iterated watersheds is compared with K-Means and greedy K-center methods. It is observed that iterated watersheds result in 4 - 66 percent improvement over K-Means and in 31 - 72 percent improvement over Greedy K-Centers in experiments on road networks of various cities.
引用
收藏
页码:626 / 636
页数:11
相关论文
共 50 条
  • [41] Selection of K in K-means clustering
    Pham, DT
    Dimov, SS
    Nguyen, CD
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2005, 219 (01) : 103 - 119
  • [42] Geodesic K-means Clustering
    Asgharbeygi, Nima
    Maleki, Arian
    19TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOLS 1-6, 2008, : 3450 - 3453
  • [43] Stability of k-means clustering
    Ben-David, Shai
    Pal, Ddvid
    Simon, Hans Ulrich
    LEARNING THEORY, PROCEEDINGS, 2007, 4539 : 20 - +
  • [44] Transformed K-means Clustering
    Goel, Anurag
    Majumdar, Angshul
    29TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2021), 2021, : 1526 - 1530
  • [45] On autonomous k-means clustering
    Elomaa, T
    Koivistoinen, H
    FOUNDATIONS OF INTELLIGENT SYSTEMS, PROCEEDINGS, 2005, 3488 : 228 - 236
  • [46] On the Optimality of k-means Clustering
    Dalton, Lori A.
    2013 IEEE INTERNATIONAL WORKSHOP ON GENOMIC SIGNAL PROCESSING AND STATISTICS (GENSIPS 2013), 2013, : 70 - 71
  • [47] Balanced K-Means for Clustering
    Malinen, Mikko I.
    Franti, Pasi
    STRUCTURAL, SYNTACTIC, AND STATISTICAL PATTERN RECOGNITION, 2014, 8621 : 32 - 41
  • [48] Discriminative k-Means Clustering
    Arandjelovic, Ognjen
    2013 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2013,
  • [49] Subspace K-means clustering
    Timmerman, Marieke E.
    Ceulemans, Eva
    De Roover, Kim
    Van Leeuwen, Karla
    BEHAVIOR RESEARCH METHODS, 2013, 45 (04) : 1011 - 1023
  • [50] Spherical k-Means Clustering
    Hornik, Kurt
    Feinerer, Ingo
    Kober, Martin
    Buchta, Christian
    JOURNAL OF STATISTICAL SOFTWARE, 2012, 50 (10): : 1 - 22