Iterated Watersheds, A Connected Variation of K-Means for Clustering GIS Data

被引:7
|
作者
Soor, Sampriti [1 ]
Challa, Aditya [1 ]
Danda, Sravan [1 ]
Sagar, B. S. Daya [1 ]
Najman, Laurent [2 ]
机构
[1] Indian Stat Inst, Syst Sci & Informat Unit, Bangalore 560059, Karnataka, India
[2] Univ Paris Est, ESIEE Paris, ENPC, LIGM UMR 8049,CNRS,UPEMLV, F-93162 Noisy Le Grand, France
关键词
Clustering algorithms; Partitioning algorithms; Cost function; Approximation algorithms; Image segmentation; Roads; Graph clustering; K-means; E-governance; watersheds; IMAGE; ALGORITHMS;
D O I
10.1109/TETC.2019.2910147
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this article, we propose a novel algorithm to obtain a solution to the clustering problem with an additional constraint of connectivity. This is achieved by suitably modifying K-Means algorithm to include connectivity constraints. The modified algorithm involves repeated application of watershed transform, and hence is referred to as iterated watersheds. Detailed analysis of the algorithm is performed using toy examples. Iterated watersheds is compared with several image segmentation algorithms. It has been shown that iterated watersheds performs better than methods such as spectral clustering, isoperimetric partitioning, and K-Means on various measures. To illustrate the applicability of iterated watersheds - a simple problem of placing emergency stations and suitable cost function is considered. Using real world road networks of various cities, iterated watersheds is compared with K-Means and greedy K-center methods. It is observed that iterated watersheds result in 4 - 66 percent improvement over K-Means and in 31 - 72 percent improvement over Greedy K-Centers in experiments on road networks of various cities.
引用
收藏
页码:626 / 636
页数:11
相关论文
共 50 条
  • [1] A Survey on K-Means Clustering for Analyzing Variation in Data
    Patil, Pratik
    Karthikeyan, A.
    INVENTIVE COMMUNICATION AND COMPUTATIONAL TECHNOLOGIES, ICICCT 2019, 2020, 89 : 317 - 323
  • [2] Clustering of Image Data Using K-Means and Fuzzy K-Means
    Rahmani, Md. Khalid Imam
    Pal, Naina
    Arora, Kamiya
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2014, 5 (07) : 160 - 163
  • [3] K-Means Clustering With Incomplete Data
    Wang, Siwei
    Li, Miaomiao
    Hu, Ning
    Zhu, En
    Hu, Jingtao
    Liu, Xinwang
    Yin, Jianping
    IEEE ACCESS, 2019, 7 : 69162 - 69171
  • [4] k-Means Clustering of Asymmetric Data
    Olszewski, Dominik
    HYBRID ARTIFICIAL INTELLIGENT SYSTEMS, PT I, 2012, 7208 : 243 - 254
  • [5] Soil data clustering by using K-means and fuzzy K-means algorithm
    Hot, Elma
    Popovic-Bugarin, Vesna
    2015 23RD TELECOMMUNICATIONS FORUM TELFOR (TELFOR), 2015, : 890 - 893
  • [6] IMPROVEMENT IN K-MEANS CLUSTERING ALGORITHM FOR DATA CLUSTERING
    Rajeswari, K.
    Acharya, Omkar
    Sharma, Mayur
    Kopnar, Mahesh
    Karandikar, Kiran
    1ST INTERNATIONAL CONFERENCE ON COMPUTING COMMUNICATION CONTROL AND AUTOMATION ICCUBEA 2015, 2015, : 367 - 369
  • [7] BiModalClust: Fused Data and Neighborhood Variation for Advanced K-Means Big Data Clustering
    Mussabayev, Ravil
    Mussabayev, Rustam
    APPLIED SCIENCES-BASEL, 2025, 15 (03):
  • [8] Bagged K-means clustering of metabolome data
    Hageman, J. A.
    van den Berg, R. A.
    Westerhuis, J. A.
    Hoefsloot, H. C. J.
    Smilde, A. K.
    CRITICAL REVIEWS IN ANALYTICAL CHEMISTRY, 2006, 36 (3-4) : 211 - 220
  • [9] K-means Data Clustering with Memristor Networks
    Jeong, YeonJoo
    Lee, Jihang
    Moon, John
    Shin, Jong Hoon
    Lu, Wei D.
    NANO LETTERS, 2018, 18 (07) : 4447 - 4453
  • [10] k-Means Clustering of Lines for Big Data
    Marom, Yair
    Feldman, Dan
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32