Indirect monitoring of vortex-induced vibration of suspension bridge hangers

被引:23
|
作者
Cantero, Daniel [1 ]
Oiseth, Ole [1 ]
Ronnquist, Anders [1 ]
机构
[1] Norwegian Univ Sci & Technol NTNU, Dept Struct Engn, Richard Birkelands Vei 1A, N-7491 Trondheim, Norway
关键词
Vortex shedding; monitoring; cable; hanger; bridge; signal processing; time-frequency analysis; CIRCULAR CROSS-SECTION; ACROSS-WIND VIBRATIONS; CABLE-STAYED BRIDGES; MATHEMATICAL-MODEL; FLEXIBLE CYLINDER; TRANSFORM; BEHAVIOR;
D O I
10.1177/1475921717721873
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Wind loading of large suspension bridges produces a variety of structural responses, including the vortex-induced vibrations of the hangers. Because it is impractical to monitor each hanger, this study explores the possibility of assessing the presence of these vibrations indirectly by analyzing the responses elsewhere on the structure. To account for the time-varying nature of the wind velocity, it is necessary to use appropriate time-frequency analysis tools. The continuous wavelet transform and the short-term Fourier transform are used here to obtain clear correlations between the vortex shedding frequency and the energy content of the Hardanger Bridge responses. The analysis of recorded signals from a permanent monitoring system installed on the deck and a temporary system installed on some of the hangers shows that it is possible to indirectly detect hanger-related vortex-induced vibrations from the deck response. Furthermore, this study elaborates on the detection of the two types of vortex-induced vibrations (cross-flow and in-line), the spatial variability of the results, and a possibility to automate the detection process. The ideas reported can be implemented readily in existing structural health monitoring systems for large cable-supported structures not only to identify vortex-induced vibrations but also to gain a better understanding of their structural response.
引用
收藏
页码:837 / 849
页数:13
相关论文
共 50 条
  • [21] Vortex-induced vibration measurement of a long-span suspension bridge through noncontact sensing strategies
    Zhang, Jian
    Zhou, Liming
    Tian, Yongding
    Yu, Shanshan
    Zhao, Wenju
    Cheng, Yuyao
    COMPUTER-AIDED CIVIL AND INFRASTRUCTURE ENGINEERING, 2022, 37 (12) : 1617 - 1633
  • [22] Identification of Vortex-Induced Vibration on the Osman Gazi Suspension Bridge Tower and Mitigation by an Active Mass Damper
    Inoue, Manabu
    Siringoringo, Dionysius M.
    Fujino, Yozo
    Koike, Yuji
    JOURNAL OF BRIDGE ENGINEERING, 2025, 30 (02)
  • [23] Cause investigation of high-mode vortex-induced vibration in a long-span suspension bridge
    Hwang, You Chan
    Kim, Sunjoong
    Kim, Ho-Kyung
    STRUCTURE AND INFRASTRUCTURE ENGINEERING, 2020, 16 (01) : 84 - 93
  • [24] Vortex-Induced Vibration Performance and Mechanism Analysis of a Suspension Bridge Affected by Water-Filled Barriers
    Lang, Tianyi
    Wang, Hao
    Liu, Zhenqing
    Xu, Zidong
    Gao, Hui
    INTERNATIONAL JOURNAL OF STRUCTURAL STABILITY AND DYNAMICS, 2024, 24 (16)
  • [25] Deep learning-based automated identification on vortex-induced vibration of long suspenders for the suspension bridge
    Su, Xun
    Mao, Jianxiao
    Wang, Hao
    Gao, Hui
    Li, Dan
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2025, 224
  • [26] Investigation on vortex-induced vibration of a suspension bridge using section and full aeroelastic wind tunnel tests
    Sun, Yanguo
    Li, Mingshui
    Liao, Haili
    WIND AND STRUCTURES, 2013, 17 (06) : 565 - 587
  • [27] Effects of railings on vortex-induced vibration of a bridge deck section
    Guan, Qing-Hai
    Li, Jia-Wu
    Hu, Zhao-Tong
    Liu, Jian-Xin
    Zhendong yu Chongji/Journal of Vibration and Shock, 2014, 33 (03): : 150 - 156
  • [28] Modelling of vortex-induced force and prediction of vortex-induced vibration of a bridge deck using method of multiple scales
    Wang, Bin
    Hao, Shengran
    Xu, You-Lin
    Liu, Yang
    Li, Yongle
    JOURNAL OF WIND ENGINEERING AND INDUSTRIAL AERODYNAMICS, 2023, 241
  • [29] Tuned Mass Damper Design for Vortex-Induced Vibration Control of a Bridge: Influence of Vortex-Induced Force Model
    Yu, Haiyan
    oiseth, Ole
    Zhang, Mingjie
    Xu, Fuyou
    Hu, Gang
    JOURNAL OF BRIDGE ENGINEERING, 2023, 28 (05)
  • [30] Evaluation of whole body vibration of vehicle drivers on long-span highway suspension bridge experiencing vortex-induced vibration
    Zhu J.
    Li H.
    Xiong Z.
    Li Y.
    Tumu Gongcheng Xuebao/China Civil Engineering Journal, 2023, 56 (08): : 60 - 74and84