On expressible sets of products

被引:0
|
作者
Hancl, Jaroslav [1 ,2 ]
Nair, Radhakrishnan [3 ]
Novotny, Lukas [4 ]
机构
[1] Univ Ostrava, Dept Math, Div UO, CZ-70103 Ostrava 1, Czech Republic
[2] Univ Ostrava, Ctr Excellence IT4Innovat, Inst Res & Applicat Fuzzy Modeling, CZ-70103 Ostrava 1, Czech Republic
[3] Univ Liverpool, Liverpool L69 7ZP, Merseyside, England
[4] Univ Ostrava, Dept Math, CZ-70103 Ostrava 1, Czech Republic
关键词
Sequences; Irrationality; Expressible set; INFINITE PRODUCTS; NUMBERS;
D O I
10.1007/s10998-014-0058-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a sequence of real numbers {a(n)}(n=1)infinity we call E-Pi{a(n)}(n=1)infinity = {Pi(infinity)(n=1) (1+1/a(n)c(n)) : c(n) is an element of Z(+)} its Pi-expressible set. In this paper we calculate E-Pi{a(n)}(n=1)(infinity) under various hypotheses on {a(n)}(n=1)(infinity). Where this is not possible we give partial information on its contents. In many ways, this analysis is a continuation of related investigations on the Sigma-expressible sets of sums.
引用
收藏
页码:199 / 206
页数:8
相关论文
共 50 条