On expressible sets of products

被引:0
|
作者
Hancl, Jaroslav [1 ,2 ]
Nair, Radhakrishnan [3 ]
Novotny, Lukas [4 ]
机构
[1] Univ Ostrava, Dept Math, Div UO, CZ-70103 Ostrava 1, Czech Republic
[2] Univ Ostrava, Ctr Excellence IT4Innovat, Inst Res & Applicat Fuzzy Modeling, CZ-70103 Ostrava 1, Czech Republic
[3] Univ Liverpool, Liverpool L69 7ZP, Merseyside, England
[4] Univ Ostrava, Dept Math, CZ-70103 Ostrava 1, Czech Republic
关键词
Sequences; Irrationality; Expressible set; INFINITE PRODUCTS; NUMBERS;
D O I
10.1007/s10998-014-0058-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a sequence of real numbers {a(n)}(n=1)infinity we call E-Pi{a(n)}(n=1)infinity = {Pi(infinity)(n=1) (1+1/a(n)c(n)) : c(n) is an element of Z(+)} its Pi-expressible set. In this paper we calculate E-Pi{a(n)}(n=1)(infinity) under various hypotheses on {a(n)}(n=1)(infinity). Where this is not possible we give partial information on its contents. In many ways, this analysis is a continuation of related investigations on the Sigma-expressible sets of sums.
引用
收藏
页码:199 / 206
页数:8
相关论文
共 50 条
  • [1] On expressible sets of products
    Jaroslav Hančl
    Radhakrishnan Nair
    Lukáš Novotný
    [J]. Periodica Mathematica Hungarica, 2014, 69 : 199 - 206
  • [2] BOUNDEDLY EXPRESSIBLE SETS
    Hancl, Jaroslav
    Sustek, Jan
    [J]. CZECHOSLOVAK MATHEMATICAL JOURNAL, 2009, 59 (03) : 649 - 654
  • [3] Boundedly expressible sets
    Hančl J.
    Šustek J.
    [J]. Czechoslovak Mathematical Journal, 2009, 59 (3) : 649 - 654
  • [4] SETS EXPRESSIBLE AS UNIONS OF 2 CONVEX SETS
    HARE, WR
    KENELLY, JW
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1970, 25 (02) : 379 - &
  • [5] Sets expressible as finite unions of starshaped sets
    Toranzos F.A.
    Cunto A.F.
    [J]. Journal of Geometry, 2004, 79 (1-2) : 190 - 195
  • [6] ON EXPRESSIBLE SETS OF GEOMETRIC SEQUENCES
    Hancl, Jaroslav
    Schinzel, Andrzej
    Sustek, Jan
    [J]. FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2008, 39 (01) : 71 - 95
  • [7] INTERSECTIONS OF SETS EXPRESSIBLE AS UNIONS OF k STARSHAPED SETS
    Breen, Marilyn
    [J]. ARS COMBINATORIA, 2016, 125 : 339 - 345
  • [8] On thin sets of primes expressible as sumsets
    Croot, ES
    Elsholtz, C
    [J]. ACTA MATHEMATICA HUNGARICA, 2005, 106 (03) : 197 - 226
  • [9] On thin sets of primes expressible as sumsets
    Ernest S. Croot III
    Christian Elsholtz
    [J]. Acta Mathematica Hungarica, 2005, 106 : 197 - 226
  • [10] Expressible sets of sequences with Hausdorff dimension zero
    Jaroslav Hančl
    Jan Šustek
    [J]. Monatshefte für Mathematik, 2007, 152 : 315 - 319