Formulation of Toupin-Mindlin strain gradient theory in prolate and oblate spheroidal coordinates

被引:7
|
作者
Liu, Dabiao [1 ,2 ]
He, Yuming [1 ,2 ]
Zhang, Bo [1 ,2 ]
Shen, Lei [1 ,2 ]
机构
[1] Huazhong Univ Sci & Technol, Dept Mech, Wuhan 430074, Peoples R China
[2] Hubei Key Lab Engn Struct Anal & Safety Assessmen, Wuhan 430074, Peoples R China
关键词
Strain gradient theory; Prolate spheroidal coordinates; Oblate spheroidal coordinates; CRACK-TIP FIELDS; DEPENDENT PLASTICITY; STRESS-CONCENTRATION; FINITE-ELEMENT; COUPLE STRESS; VOID SHAPE; CAVITY EXPANSION; SINGLE-CRYSTALS; PART I; SIZE;
D O I
10.1016/j.euromechsol.2014.07.015
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The Toupin-Mindlin strain gradient theory is reformulated in orthogonal curvilinear coordinates, and is then applied to prolate and oblate spheroidal coordinates for the first time. The basic equations, boundary conditions, the gradient of the displacement, strain and strain gradient tensors of this theory are derived in terms of physical components in these two coordinate systems, which have a potential significance for the investigation of micro-inclusion and micro-void problems. As an example, using these formulae, we formulate and discuss the boundary-value problem of a spheroidal cavity embedded in a strain gradient elastic medium subjected to uniaxial tension. In addition, the previous results given by Zhao and Pedroso (Int. J. Solids. Struct. (2008) 45, 3507-3520) in cylindrical and spherical coordinates are amended. (C) 2014 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:227 / 241
页数:15
相关论文
共 50 条
  • [21] Concrete wave dispersion interpretation through Mindlin's strain gradient elastic theory
    Iliopoulos, Sokratis N.
    Malm, Fabian
    Grosse, Christian U.
    Aggelis, Dimitrios G.
    Polyzos, Demosthenes
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2017, 142 (01): : EL89 - EL94
  • [22] Thermal Buckling Analysis of a Mindlin Rectangular FGM Microplate Based on the Strain Gradient Theory
    Ansari, R.
    Gholami, R.
    Shojaei, M. Faghih
    Mohammadi, V.
    Darabi, M. A.
    JOURNAL OF THERMAL STRESSES, 2013, 36 (05) : 446 - 465
  • [23] A NONLINEAR TIMOSHENKO BEAM FORMULATION BASED ON STRAIN GRADIENT THEORY
    Ansari, Reza
    Gholami, Raheb
    Darabi, Mohammad Ali
    JOURNAL OF MECHANICS OF MATERIALS AND STRUCTURES, 2012, 7 (02) : 195 - 211
  • [24] A novel size-dependent microbeam element based on Mindlin's strain gradient theory
    Ansari, R.
    Shojaei, M. Faghih
    Ebrahimi, F.
    Rouhi, H.
    Bazdid-Vahdati, M.
    ENGINEERING WITH COMPUTERS, 2016, 32 (01) : 99 - 108
  • [25] A novel size-dependent microbeam element based on Mindlin’s strain gradient theory
    R. Ansari
    M. Faghih Shojaei
    F. Ebrahimi
    H. Rouhi
    M. Bazdid-Vahdati
    Engineering with Computers, 2016, 32 : 99 - 108
  • [26] A three dimensional field formulation, and isogeometric solutions to point and line defects using Toupin's theory of gradient elasticity at finite strains
    Wang, Z.
    Rudraraju, S.
    Garikipati, K.
    JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2016, 94 : 336 - 361
  • [27] BOUNDARY ELEMENT SOLUTIONS FOR FREQUENCY DOMAIN PROBLEMS IN MINDLIN's STRAIN GRADIENT THEORY OF ELASTICITY
    Papacharalampopoulos, A.
    Polyzos, D.
    Charalambopoulos, A.
    Beskos, D. E.
    ADVANCED TOPICS IN SCATTERING THEORY AND BIOMEDICAL ENGINEERING, 2010, : 210 - 217
  • [28] A nonlinear thick plate formulation based on the modified strain gradient theory
    Ashoori, A.
    Mahmoodi, M. J.
    MECHANICS OF ADVANCED MATERIALS AND STRUCTURES, 2018, 25 (10) : 813 - 819
  • [29] Elastic-Gap Free Formulation in Strain Gradient Plasticity Theory
    Mukherjee, Anjan
    Banerjee, Biswanath
    JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 2024, 91 (06):
  • [30] Asymptotic behavior in Form II Mindlin's strain gradient theory for porous thermoelastic diffusion materials
    Aouadi, Moncef
    Amendola, Ada
    Tibullo, Vincenzo
    JOURNAL OF THERMAL STRESSES, 2020, 43 (02) : 191 - 209