Wave propagation problem for a micropolar elastic waveguide

被引:1
|
作者
Kovalev, V. A. [1 ]
Murashkin, E. V. [2 ,3 ]
Radayev, Y. N. [2 ,4 ]
机构
[1] Moscow City Govt Univ Management, Sretenka Str 28, Moscow 107045, Russia
[2] Russian Acad Sci, Ishlinsky Inst Problems Mech, Vernadsky Ave 101 Bldg 1, Moscow 119526, Russia
[3] Bauman Moscow State Tech Univ, 2nd Baumanskaya Str 5-1, Moscow 105005, Russia
[4] Kyoto Univ, Grad Sch Energy Sci, Dept Energy Convers Sci, Sakyo Ku, Yoshida Honmachi, Kyoto 6068501, Japan
基金
俄罗斯基础研究基金会;
关键词
WEAK DISCONTINUITIES;
D O I
10.1088/1742-6596/991/1/012047
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
A propagation problem for coupled harmonic waves of translational displacements and microrotations along the axis of a long cylindrical waveguide is discussed at present study. Microrotations modeling is carried out within the linear micropolar elasticity frameworks. The mathematical model of the linear (or even nonlinear) micropolar elasticity is also expanded to a field theory model by variational least action integral and the least action principle. The governing coupled vector differential equations of the linear micropolar elasticity are given. The translational displacements and microrotations in the harmonic coupled wave are decomposed into potential and vortex parts. Calibrating equations providing simplification of the equations for the wave potentials are proposed. The coupled differential equations are then reduced to uncoupled ones and finally to the Helmholtz wave equations. The wave equations solutions for the translational and microrotational waves potentials are obtained for a high-frequency range.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] PROPAGATION OF MONOCHROMATIC WAVES IN AN INFINITE MICROPOLAR ELASTIC PLATE
    NOWACKI, W
    NOWACKI, WK
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES TECHNIQUES, 1969, 17 (01): : 45 - &
  • [42] THE PROBLEM OF A CIRCULAR PUNCH ON A MICROPOLAR ELASTIC SOLID
    DESARKAR, PK
    MITRA, M
    INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 1985, 23 (06) : 599 - 610
  • [43] Love wave propagation in heterogeneous micropolar media
    Kundu, Santimoy
    Kumari, Alka
    Pandit, Deepak Kr.
    Gupta, Shishir
    MECHANICS RESEARCH COMMUNICATIONS, 2017, 83 : 6 - 11
  • [44] PROPAGATION OF ELASTIC WAVES IN A MICROPOLAR CYLINDER .I.
    NOWACKI, W
    NOWACKI, WK
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES TECHNIQUES, 1969, 17 (01): : 55 - &
  • [45] DYNAMIC PROPAGATION OF A FINITE CRACK IN A MICROPOLAR ELASTIC SOLID
    HAN, SY
    NARASIMHAN, MNL
    KENNEDY, TC
    ACTA MECHANICA, 1990, 85 (3-4) : 179 - 191
  • [46] THE PROBLEM OF A HOT PUNCH IN A MICROPOLAR ELASTIC SOLID
    DESARKAR, PK
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1985, 16 (10): : 1181 - 1201
  • [47] Analyzing Wave Propagation Characteristics at the Interface of Non-Local Micropolar Elastic and Linear Viscoelastic Solid
    Kumar, Ravinder
    Priyadarshan, Pawan
    Kumar, Pawan
    MECHANICS OF SOLIDS, 2024, 59 (04) : 2141 - 2160
  • [48] A problem-based approach to elastic wave propagation: the role of constraints
    Fazio, Claudio
    Guastella, Ivan
    Tarantino, Giovanni
    EUROPEAN JOURNAL OF PHYSICS, 2009, 30 (06) : 1295 - 1310
  • [49] CAUCHY-POISSON PROBLEM OF WAVE PROPAGATION IN AN OCEAN WITH AN ELASTIC BOTTOM
    Maiti, P.
    Kundu, P.
    Mandal, B. N.
    JOURNAL OF APPLIED MECHANICS AND TECHNICAL PHYSICS, 2023, 64 (03) : 423 - 436
  • [50] THE GENERAL PROBLEM OF ELASTIC WAVE-PROPAGATION IN MULTILAYERED ANISOTROPIC MEDIA
    NAYFEH, AH
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1991, 89 (04): : 1521 - 1531