Long-term properties of concrete containing ground granulated blast furnace slag and steel slag

被引:46
|
作者
Liu, Shuhua [1 ,2 ]
Wang, Zhigang [1 ]
Li, Xin [1 ]
机构
[1] Wuhan Univ, State Key Lab Water Resources & Hydropower Engn S, Wuhan 430072, Peoples R China
[2] UCL, Dept Civil Environm & Geomat Engn, London, England
基金
中国国家自然科学基金;
关键词
MECHANICAL-PROPERTIES; PORTLAND-CEMENT; BLENDED CEMENTS; SULFATE ATTACK; FLY-ASH; HYDRATION; STRENGTH; DURABILITY; RESISTANCE; AGGREGATE;
D O I
10.1680/macr.14.00074
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
In this paper, the influence of six different mineral admixtures on the long-term properties of concrete within 1080 d is investigated; these admixtures include steel slag, ground granulated blast furnace slag (GGBS) and composite mineral admixtures with four different GGBS-to-steel slag ratios. The results show that steel slag and composite mineral admixtures with a high content of steel slag have many negative effects on the long-term properties of concrete, such as decreasing strength, increasing porosity and chloride penetrability, and decreasing carbonation and sulfate resistance. GGBS tends to improve the long-term properties of concrete. Concrete containing composite mineral admixture with a high content of GGBS can achieve similar long-term strength, porosity, chloride penetrability, and carbonation and sulfate resistance to Portland cement concrete. The influence of the composite mineral admixture composed of 80% GGBS and 20% steel slag on the long-term properties of concrete might be very close to that of GGBS. All the mineral admixtures tend to decrease the long-term drying shrinkage of concrete. The effect of composite mineral admixtures with higher GGBS content on the long-term drying shrinkage of concrete is more significant.
引用
收藏
页码:1095 / 1103
页数:9
相关论文
共 50 条
  • [22] Investigation of hydraulic activity of ground granulated blast furnace slag in concrete
    Pal, SC
    Mukherjee, A
    Pathak, SR
    CEMENT AND CONCRETE RESEARCH, 2003, 33 (09) : 1481 - 1486
  • [23] THE ROLE OF GROUND GRANULATED BLAST FURNACE SLAG IN THE SUSTAINABILITY OF CONCRETE STRUCTURES
    Kayali, Obada
    Ahmed, M. Sharfuddin
    ISISS '2009: INNOVATION & SUSTAINABILITY OF STRUCTURES, VOLS 1 AND 2, 2009, : 25 - 31
  • [24] INVESTIGATION ON THE EFFECTIVENESS OF GROUND GRANULATED BLAST FURNACE SLAG ADDITIVE IN CONCRETE
    Vollpracht, A.
    Nebel, H.
    Brameshuber, W.
    INTERNATIONAL RILEM CONFERENCE ON MATERIAL SCIENCE (MATSCI), VOL III, 2010, 77 : 199 - 209
  • [25] Properties of concrete incorporating fly ash and ground granulated blast-furnace slag
    Li, GY
    Zhao, XH
    CEMENT & CONCRETE COMPOSITES, 2003, 25 (03): : 293 - 299
  • [26] Physical and mechanical properties of recycled aggregate concrete with ground granulated blast furnace slag
    Cakir, Ozgur
    Sayaca, Selin
    JOURNAL OF THE FACULTY OF ENGINEERING AND ARCHITECTURE OF GAZI UNIVERSITY, 2021, 36 (02): : 939 - 951
  • [27] Autogenous shrinkage of concrete containing granulated blast-furnace slag
    Lee, K. M.
    Lee, H. K.
    Lee, S. H.
    Kim, G. Y.
    CEMENT AND CONCRETE RESEARCH, 2006, 36 (07) : 1279 - 1285
  • [28] Preparation and Properties of a Composite Grinding Aid for Steel Slag and Granulated Blast Furnace Slag
    Chen Mi-mi
    Zhao Feng-qing
    Fan Tie-lin
    PROCEEDINGS OF THE 2015 INTERNATIONAL SYMPOSIUM ON MATERIAL, ENERGY AND ENVIRONMENT ENGINEERING (ISM3E 2015), 2016, 46 : 61 - 63
  • [29] Characteristics of Blended Geopolymer Concrete Using Ultrafine Ground Granulated Blast Furnace Slag and Copper Slag
    Rathanasalam, Vijayasarathy
    Perumalsami, Jayabalan
    Jayakumar, Karthikeyan
    ANNALES DE CHIMIE-SCIENCE DES MATERIAUX, 2020, 44 (06): : 433 - 439
  • [30] Developing Geopolymer Concrete by Using Ferronickel Slag and Ground-Granulated Blast-Furnace Slag
    Nguyen, Quang Dieu
    Castel, Arnaud
    Kern, Frank
    Fantozzi, Gilbert
    CERAMICS-SWITZERLAND, 2023, 6 (03): : 1861 - 1878