Genome-Wide Association of Stem Carbohydrate Accumulation and Remobilization during Grain Growth in Bread Wheat (Triticum aestivum L.) in Mediterranean Environments

被引:3
|
作者
Guerra, Fernando P. [1 ]
Yanez, Alejandra [2 ,3 ]
Matus, Ivan [4 ]
del Pozo, Alejandro [2 ]
机构
[1] Univ Talca, Inst Ciencias Biol, Talca 3460000, Chile
[2] Univ Talca, Fac Ciencias Agr, Ctr Mejoramiento Genet & Fenom Vegetal, Talca 3460000, Chile
[3] Univ Catolica Maule, Fac Ciencias Agr & Forestales, Talca 3460000, Chile
[4] Inst Invest Agr, Ctr Reg Invest Quilamapu, Chillan 3780000, Chile
来源
PLANTS-BASEL | 2021年 / 10卷 / 03期
关键词
carbohydrate distribution; water deficit; grain filling; wheat breeding; genome; Mediterranean climate; CARBON-ISOTOPE DISCRIMINATION; GENOTYPIC VARIATION; STRICTOSIDINE SYNTHASE; PHYSIOLOGICAL TRAITS; AGRONOMIC TRAITS; DROUGHT; GENE; STRESS; RESISTANCE; RESPONSES;
D O I
10.3390/plants10030539
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Water deficit represents an important challenge for wheat production in many regions of the world. Accumulation and remobilization of water-soluble carbohydrates (WSCs) in stems are part of the physiological responses regulated by plants to cope with water stress and, in turn, determine grain yield (GY). The genetic mechanisms underlying the variation in WSC are only partially understood. In this study, we aimed to identify Single Nucleotide Polymorphism (SNP) markers that account for variation in a suite of WSC and GY, evaluated in 225 cultivars and advanced lines of spring wheat. These genotypes were established in two sites in the Mediterranean region of Central Chile, under water-limited and full irrigation conditions, and assessed in two growing seasons, namely anthesis and maturity growth periods. A genome-wide association study (GWAS) was performed by using 3243 SNP markers. Genetic variance accounted for 5 to 52% of phenotypic variation of the assessed traits. A rapid linkage disequilibrium decay was observed across chromosomes (r(2) <= 0.2 at 2.52 kbp). Marker-trait association tests identified 96 SNPs related to stem weight (SW), WSCs, and GY, among other traits, at the different sites, growing seasons, and growth periods. The percentage of SNPs that were part of the gene-coding regions was 34%. Most of these genes are involved in the defensive response to drought and biotic stress. A complimentary analysis detected significant effects of different haplotypes on WSC and SW, in anthesis and maturity. Our results evidence both genetic and environmental influence on WSC dynamics in spring wheat. At the same time, they provide a series of markers suitable for supporting assisted selection approaches and functional characterization of genes.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 50 条
  • [21] Genome-wide sequence and expressional analysis of autophagy Gene family in bread wheat (Triticum aestivum L.)
    Yue, Wenjie
    Nie, Xiaojun
    Cui, Licao
    Zhi, Yongqiang
    Zhang, Ting
    Du, Xianghong
    Song, Weining
    JOURNAL OF PLANT PHYSIOLOGY, 2018, 229 : 7 - 21
  • [22] Genome-wide identification of Aux/IAA and ARF gene families in bread wheat (Triticum aestivum L.)
    Chanderkant Chaudhary
    Nikita Sharma
    Paramjit Khurana
    Protoplasma, 2023, 260 : 257 - 270
  • [23] Genome-Wide Identification and Analysis of MAPK and MAPKK Gene Families in Bread Wheat (Triticum aestivum L.)
    Zhan, Haoshuang
    Yue, Hong
    Zhao, Xian
    Wang, Meng
    Song, Weining
    Nie, Xiaojun
    GENES, 2017, 8 (10)
  • [24] Genome wide association study for stripe rust resistance in spring bread wheat (Triticum aestivum L.)
    El Messoadi, Khalil
    El Hanafi, Samira
    El Gataa, Zakaria
    Kehel, Zakaria
    Bouhouch, Yassin
    Tadesse, Wuletaw
    JOURNAL OF PLANT PATHOLOGY, 2022, 104 (03) : 1049 - 1059
  • [25] Genome wide association study for stripe rust resistance in spring bread wheat (Triticum aestivum L.)
    Khalil El Messoadi
    Samira El Hanafi
    Zakaria EL Gataa
    Zakaria Kehel
    Yassin bouhouch
    Wuletaw Tadesse
    Journal of Plant Pathology, 2022, 104 : 1049 - 1059
  • [26] Genome wide association and haplotype analyses for the crease depth trait in bread wheat (Triticum aestivum L.)
    Song, Chengxiang
    Xie, Kaidi
    Hu, Xin
    Zhou, Zhihua
    Liu, Ankui
    Zhang, Yuwei
    Du, Jiale
    Jia, Jizeng
    Gao, Lifeng
    Mao, Hailiang
    FRONTIERS IN PLANT SCIENCE, 2023, 14
  • [27] Genome-wide association study reveals the genetic architecture for calcium accumulation in grains of hexaploid wheat (Triticum aestivum L.)
    Xia Shi
    Zhengfu Zhou
    Wenxu Li
    Maomao Qin
    Pan Yang
    Jinna Hou
    Fangfang Huang
    Zhensheng Lei
    Zhengqing Wu
    Jiansheng Wang
    BMC Plant Biology, 22
  • [28] Genome-wide association study reveals the genetic architecture for calcium accumulation in grains of hexaploid wheat (Triticum aestivum L.)
    Shi, Xia
    Zhou, Zhengfu
    Li, Wenxu
    Qin, Maomao
    Yang, Pan
    Hou, Jinna
    Huang, Fangfang
    Lei, Zhensheng
    Wu, Zhengqing
    Wang, Jiansheng
    BMC PLANT BIOLOGY, 2022, 22 (01)
  • [29] Multi-locus genome-wide association mapping for spike-related traits in bread wheat (Triticum aestivum L.)
    Parveen Malik
    Jitendra Kumar
    Shiveta Sharma
    Rajiv Sharma
    Shailendra Sharma
    BMC Genomics, 22
  • [30] Genome-Wide Association Study Reveals Novel Genes Associated with Culm Cellulose Content in Bread Wheat (Triticum aestivum, L.)
    Kaur, Simerjeet
    Zhang, Xu
    Mohan, Amita
    Dong, Haixiao
    Vikram, Prashant
    Singh, Sukhwinder
    Zhang, Zhiwu
    Gill, Kulvinder S.
    Dhugga, Kanwarpal S.
    Singh, Jaswinder
    FRONTIERS IN PLANT SCIENCE, 2017, 8